




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、下列命题是真命题的是(
)A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线互相垂直的矩形是正方形D.四边相等的平行四边形是正方形2、已知两个直角三角形的三边长分别为3,4,和6,8,,且这两个直角三角形不相似,则的值为(
)A.或 B.15 C. D.3、为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是(
)A.0.32 B.0.55 C.0.68 D.0.874、如果,那么的结果是(
)A. B. C. D.5、如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于()A.1 B. C. D.26、已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中错误的有(
)A.1个 B.2个 C.3个 D.4个二、多选题(6小题,每小题2分,共计12分)1、已知:线段a、b,且,则下列说法正确的是(
)A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.2、如图,在□ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF,BF.下列结论正确的是(
)A.∠ABC=2∠ABF B.EF=BF C.S四边形DEBC=2S△EFB D.∠CFE=4∠DEF3、在直角坐标系中,已知点A(6,﹣3),以原点O为位似中心,相似比为,把线段OA缩小为OA′,则点A′的坐标为(
)A.(﹣2,﹣1) B.(﹣2,1) C.(2,1) D.(2,﹣1)4、如图,不能判定为菱形的是(
)A. B.C. D.5、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA6、如图,四边形ABCD的对角线互相平分,要使它成为矩形,不能添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如图,在长方形ABCD中,AD=8,AB=6,点E为线段DC上一个动点,把△ADE沿AE折叠,使点D落在点F处,若△CEF为直角三角形时,则DE的长为___.2、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.3、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.4、已知(m-1)+3x-5=0是一元二次方程,则m=________.5、如图,点E、F分别是矩形ABCD边BC和CD上的点,把△CEF沿直线EF折叠得到△GEF,再把△BEG沿直线BG折叠,点E的对应点H恰好落在对角线BD上,若此时F、G、H三点在同一条直线上,且线段HF与HD也恰好关于某条直线对称,则的值为______.6、若,则________.7、如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m²,设道路的宽为xm,则根据题意,可列方程为_______.8、如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=__.四、解答题(6小题,每小题10分,共计60分)1、如图,矩形ABCD中,AB=2cm,BC=3cm,点E从点B沿BC以2cm/s的速度向点C移动,同时点F从点C沿CD以1cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动.当△AEF是以AF为底边的等腰三角形时,求点E运动的时间.2、如图,在矩形中,对角线与相交于点E,过点A作,过点B作,两线相交于点F.(1)求证:四边形是菱形;(2)连接,若,求证:.3、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.4、如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形,连接CF、DF.设.(当点E与点B重合时,x的值为0),.小明根据学习函数的经验,对函数随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.5、解一元二次方程(1)(2)6、已知:.(1)求代数式的值;(2)如果,求的值.-参考答案-一、单选题1、C【解析】【分析】根据矩形的判定方法对A、B矩形判断;根据正方形的判定方法对C、D矩形判断.【详解】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.故选C.【考点】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、A【解析】【分析】判断未知边m、n是直角三角形的直角边还是斜边,再根据勾股定理计算出m、n的值,最后根据题目中两个三角形不相似,对应边的比值不同进行判断.【详解】解:在第一个直接三角形中,若m是直角边,则,若m是斜边,则;在第二个直接三角形中,若n是直角边,则,若n是斜边,则;又因为两个直角三角形不相似,故m=5和n=10,m=和n=不能同时取,即当m=5,,,当,n=10,,故选:A.【考点】本题主要考查了勾股定理以及相似三角形的性质,在直角三角形中对未知边是直角边还是斜边进行不同情况的讨论是解题的关键.3、C【解析】【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不低于170cm的频率,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【考点】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.4、B【解析】【分析】根据比例的性质即可得到结论.【详解】∵=,∴可设a=2k,b=3k,∴==-.故选B.【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案.5、D【解析】【分析】通过△ABD∽△DCE,可得,即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故选:D.【考点】本题考查了三角形的相似,做题的关键是△ABD∽△DCE.6、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解:四边形是平行四边形,A、当时,它是菱形,选项不符合题意,B、当时,它是菱形,选项不符合题意,C、当时,它是矩形,选项不符合题意,D、当时,它是矩形,不一定是正方形,选项符合题意,故选:.【考点】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.二、多选题1、BCD【解析】【分析】根据比例的定义和性质,对选项一一分析,即可选出正确答案.【详解】解:A、两条线段的比,没有长度单位,它与所采用的长度单位无关,故选项错误,不符合题意;B、,根据等比性质,a=2k,b=3k(k>0),故选项正确,符合题意;C、⇒3a=2b,故选项正确,符合题意;D、⇒a=b,故选项正确,符合题意.故选:BCD.【考点】本题考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.注意两条线段的比,没有长度单位,它与所采用的长度单位无关.2、ABC【解析】【分析】延长EF交BC的延长线于G,取AB的中点H连接FH.根据等边对等角和平行线的性质可证得∠CBF=∠FBH,进而即可求证∠ABC=2∠ABF;根据“AAS”证得△DFE≌△FCG,易知FE=FG,进而可得∠EBG=90°,根据直角三角形斜边中线定理即可求证BF=EF;根据全等三角形的性质可得S△DFE=S△CFG,进而可得S四边形DEBC=S△EBG,进而即可求证S四边形DEBC=S△EBG=2S△BEF;求证四边形BCFH是平行四边形,进而证得四边形BCFH是菱形,根据菱形的性质可得∠BFC=∠BFH,进而根据等边对等角和平行线的性质可得∠BFH=∠EFH=∠DEF,进而即可验证结论∠CFE=4∠DEF.【详解】如图,延长EF交BC的延长线于G,取AB的中点H连接FH.∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵CD=2AD,DF=FC,∴CF=AD=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故A选项正确;∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG(AAS),∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故B选项正确;∵△DFE≌△FCG,∴S△DFE=S△CFG,∴S四边形DEBC=S△EBG,∵FE=FG,∴S四边形DEBC=S△EBG=2S△BEF,故C选项正确;∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故D选项错误,故选:ABC.【考点】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、BD【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k解答.【详解】解:∵点A的坐标为(−6,3),以原点为位似中心将△ABO缩小,位似比为,∴点A的对应点的坐标为:(−6×,3×)或(−6×(−),3×(−)),即(−2,1)或(2,−1),故选:BD.【考点】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.4、ABC【解析】【分析】根据题意先判断可以判定是菱形的条件即可.【详解】解:根据菱形的判定定理知:当∠DCA=∠BCA,∵四边形为平行四边形,∴∠ADC=∠ABC,AC=AC,∴,∴BC=DC,∴▱ABCD为菱形,故其他三项不能判定,故答案选:ABC.【考点】此题考查菱形的判定定理,熟练掌握定理并应用是关键.5、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.6、ABC【解析】【分析】根据题意可得四边形ABCD是平行四边形,然后利用矩形的判定定理,即可求解.【详解】解:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∴AB=CD,AD∥BC,故A、B符合题意;若AB=BC,可得到四边形ABCD是菱形,故C符合题意;若AC=BD,可得到四边形ABCD是矩形,故D不符合题意;故选ABC.【考点】本题主要考查了矩形的判定,平行四边形的性质与判定熟练掌握矩形的判定定理是解题的关键.三、填空题1、或8或或【解析】【分析】当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如答图1所示.先利用勾股定理计算出AC=10,根据折叠的性质得∠AFE=∠D=90°,设DE=x,则EF=x,CE=6-x,然后在Rt△CEF中运用勾股定理可计算出x即可.②当点F落在AB边上时,如答图2所示.此时四边形ADEF为正方形,得出DE=AD=8.③当点F落在BC边上时,利用勾股定理即可解决问题;④如图4中,当点F在CB的延长线上时,根据勾股定理列出方程求解即可.【详解】解:∵四边形ABCD是矩形,∴∠D=∠B=90°,CD=AB=6,,当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,F落在AC上,如图1所示.由折叠的性质得:EF=DE,AF=AD=8,设DE=x,则EF=x,CE=6-x,在Rt△CEF中,由勾股定理得:∵EF2+CF2=CE2,∴x2+22=(6-x)2,解得x=,∴DE=;②当点F落在AB边上时,如图2所示.此时ADEF为正方形,∴DE=AD=8.③如图4,当点F落在BC边上时,易知BF,设DE=EF=x,在Rt△EFC中,,,,④如图3中,当点F在CB的延长线上时,设DE=EF=x,则BF,在Rt△CEF中,,解得x=,综上所述,BE的长为或8或或.【考点】本题考查了折叠的性质、矩形的性质、勾股定理、正方形的判定与性质等知识;熟练掌握折叠和矩形的性质是解决问题的关键.2、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.3、或##或【解析】【分析】连接,根据题意可得,当∠ADQ=90°时,分点在线段上和的延长线上,且,勾股定理求得即可.【详解】如图,连接,在Rt△ABC中,∠ACB=90°,,,,,根据题意可得,当∠ADQ=90°时,点在上,且,,如图,在中,,在中,故答案为:或.【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.4、-1【解析】【分析】根据一元二次方程的定义m-1≠0,且,解答即可.【详解】∵(m-1)+3x-5=0是一元二次方程,∴m-1≠0,且,∴m-1≠0,且,∴,故答案为:-1.【考点】本题考查了一元二次方程的定义即含有一个未知数且含未知数项的次数最高是2的整式方程,熟练掌握定义是解题的关键.5、【解析】【分析】根据线段HF与HD也恰好关于某条直线对称,可得HF=HD,由折叠和同角的余角相等得,然后证明,再利用设元法即可解决问题.【详解】解:∵线段HF与HD也恰好关于某条直线对称,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折叠可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等边三角形,∴∠CBD=∠CEF=30°,∴,设GF=CF=x,HF=DF=y,则HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考点】本题主要考查折叠的性质、轴对称的性质、相似三角形的判定与性质.解决本题的关键是掌握翻折的性质.6、【解析】【分析】设,,代入求解即可.【详解】由可设,,k是非零整数,则.故答案为:.【考点】本题主要考查了比例的基本性质,准确利用性质变形是解题的关键.7、(12-x)(8-x)=77【解析】【分析】道路外的四块土地拼到一起正好构成一个矩形,矩形的长和宽分别是(12-x)和(8-x),根据矩形的面积公式,列出关于道路宽的方程求解.【详解】道路的宽为x米.依题意得:(12-x)(8-x)=77,故答案为(12-x)(8-x)=77.【考点】本题考查了一元二次方程的应用,关键将四个矩形用恰当的方式拼成大矩形列出等量关系.8、【解析】【分析】根据相似三角形对应中线的比等于相似比求出,根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵M,N分别是DE,BC的中点,∴AM、AN分别为△ADE、△ABC的中线,∵△ADE∽△ABC,∴==,∴=()2=,故答案为:.【考点】本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.四、解答题1、(6-)s【解析】【分析】设点E运动的时间是x秒.根据题意可得方程,解方程即可得到结论.【详解】解:设点E运动的时间是xs.根据题意可得22+(2x)2=(3-2x)2+x2,解这个方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴两点运动了1.5s后停止运动.∴x=6-.答:当△AEF是以AF为底边的等腰三角形时,点E运动的时间是(6-)s.【考点】本题考查了一元二次方程的应用,考查了矩形的性质,等腰三角形的判定及性质,勾股定理的运用.2、(1)见解析;(2)见解析【解析】【分析】(1)先证明四边形是平行四边形,再由矩形的性质得出,即可得出四边形是菱形;(2)连接,由菱形的性质得出,证出和是等边三角形,推导出即可求解.【详解】证明:(1),,四边形是平行四边形,四边形是矩形,,,,,四边形是菱形;(2)连接,四边形是菱形,,,∠AFC=90°,,,是等边三角形,是等边三角形,,,又,是等边三角形,.【考点】本题考查了菱形的判定与性质、矩形的性质、等边三角形的判定与性质、平行四边形的判定;熟练掌握矩形的性质和菱形的判定与性质,证明四边形是菱形再进一步证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防腐保温工程各工序衔接管理方案
- 2025年神经科高危病人监护护理技能检测考试卷答案及解析
- Unit 2 Sports and Fitness Lesson 3 Running and Fitness 教学设计-2024-2025学年高中英语北师大版(2019)必修第一册
- 2025年全科护理综合护理能力评估模拟考试答案及解析
- 2025年上海市租赁合同(中英文对照版)
- 2025年内分泌科糖尿病护理技能考核答案及解析
- 第17课 尊重每一个职业梦想说课稿-2023-2024学年小学心理健康四年级下册教科版
- 2025年感染控制科院内感染防控措施模拟考试卷答案及解析
- 第6课 画脸 教学设计-五年级下册小学美术同步备课资源包(苏少版)
- 7《纳米技术就在我们身边》教学设计-2023-2024学年四年级下册语文统编版
- GB/T 2423.22-2012环境试验第2部分:试验方法试验N:温度变化
- 最新低压电工安全培训课件
- 水土保持工程质量评定表
- 整机部整机出货检验重点标准
- 人像摄影:户外人像摄影课件
- 美丽中国中英文字幕
- 《中国传统服饰简介》PPT课件(完整版)
- 《教育技术学导论》课程教学大纲
- 污染土壤异位修复现场施工方案
- CCP点确认记录参考模板
- 《日汉翻译2》教学大纲
评论
0/150
提交评论