版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省兴平市中考数学真题分类(勾股定理)汇编专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为(
)A.10m B.15m C.18m D.20m2、如图,正方形ABCD中,AB=12,将△ADE沿AE对折至△AEF,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是()A.2 B.3 C.4 D.53、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的面积是9,则小正方形的面积是(
)A.3 B.4 C.5 D.64、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形5、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()A. B. C. D.6、如图所示的网格是正方形网格,A,B,C,D是网格线交点,则与的大小关系为(
)A. B. C. D.无法确定7、如图,正方形的边长为10,,,连接,则线段的长为(
)A. B. C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,已知四边形中,,则四边形的面积等于________.2、如图,在的正方形网格中,每个小正方形的顶点称为格点,点、、均在格点上,则______.3、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.4、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.E为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点B'落在CD的延长线上.若AB=10,BC=8,则△ACE的面积为________.5、在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是_______.6、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部________m位置断裂.7、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).则芦苇长_____尺.8、如图,在正方形网格中,点A,B,C,D,E是格点,则∠ABD+∠CBE的度数为_____________.
三、解答题(7小题,每小题10分,共计70分)1、如图,将RtABC纸片沿AD折叠,使直角顶点C与AB边上的点E重合,若AB=10cm,AC=6cm,求线段BD的长.2、如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且,连接DE,DF.(1)求证:;(2)连接EF,取EF中点G,连接DG并延长交BC于H,连接BG.①依题意,补全图形;②求证:;③若,用等式表示线段BG,HG与AE之间的数量关系,请直接写出结论.3、如图,某海岸线MN的方向为北偏东75°,甲,乙两船分别向海岛C运送物资,甲船从港口A处沿北偏东45°方向航行,乙船从港口B处沿北偏东30°方向航行,已知港口B到海岛C的距离为30海里,求港口A到海岛C的距离.4、已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.5、如图,,两个工厂位于一段直线形河道的异侧,工厂至河道的距离为,工厂至河道的距离为,经测量河道上、两地间的距离为,现准备在河边某处(河宽不计)修一个污水处理厂.(1)设,请用的代数式表示的长______;(结果保留根号)(2)为了使,两厂到污水处理厂的排污管道之和最短,请在图中画出污水厂位置,并求出排污管道最短长度?(3)通过以上的解答,充分展开联想,运用数形结合思想,请你求出的最小值为多少?6、如图所示,在中,,,,为边上的中点.(1)求、的长度;(2)将折叠,使与重合,得折痕;求、的长度.7、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,,,于A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?-参考答案-一、单选题1、C【解析】【详解】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.2、C【解析】【分析】连接AG,证明△ABG≌△AFG,得到FG=BG,△ADE沿AE对折至△AEF,则EF=DE,设DE=x,则EF=x,EC=12-x,则Rt△EGC中根据勾股定理列方程可求出DE的值.【详解】如图,连接AG,∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE对折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共边,∴△ABG≌△AFG(HL),∵G刚好是BC边的中点,∴BG=FG=,设DE=x,则EF=x,EC=12-x,在Rt△EGC中,根据勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的长是4,答案选C.【考点】本题考查了正方形和全等三角形的综合知识,根据勾股定理列方程是本题的解题关键.3、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积−4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案.【详解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面积为:a2+b2=9,∴2ab=15−9=6,即ab=3,∴直角三角形的面积为:,∴小正方形的面积为:,故选:A.【考点】此题主要考查了完全平方公式及勾股定理的应用,熟练应用完全平方公式及勾股定理是解题关键.4、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可.【详解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.设三边长为a,a,∵,∴三角形ABC是直角三角形.综上所述:△ABC是等腰直角三角形.故选D.【考点】本题考查了等腰三角形的判定和勾股定理逆定理.此题关键是利用勾股定理的逆定理解答.5、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入数据求得CF=故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分.6、C【解析】【分析】根据每个小网格都为正方形,设每个网格为1,由勾股定理可以求出AD、AC、CD的长,再由勾股定理的逆定理得到△ACD为等腰直角三角形,同理可得△ABC为等腰直角三角形,即∠BAC=∠DAC.【详解】解:如图,设正方形每个网格的边长都为1,连接CD、BC,则,,,,为等腰直角三角形,,同理:,,,,为等腰直角三角形,,.故选:C.【考点】本题考查勾股定理的性质、勾股定理的逆定理以及等腰直角三角形的判定,解本题的关键要掌握勾股定理及逆定理的基本知识.7、B【解析】【分析】延长DH交AG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【详解】解:延长DH交AG于点E∵四边形ABCD为正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD为直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故选B.【考点】此题考查是正方形的性质、全等三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.二、填空题1、36【解析】【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,最后利用三角形的面积公式求解即可.【详解】连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•AD=×3×4+×5×12=36.【考点】本题考查了勾股定理及勾股定理的逆定理,正确作出辅助线是解题的关键.2、45°##45度【解析】【分析】取正方形网格中格点Q,连接PQ和BQ,证明∠AQB=90°,由勾股定理计算PQ=QB,进而得到△QPB为等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【详解】解:取正方形网格中格点Q,连接PQ和BQ,如下图所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA²=2²+4²=20,QB²=2²+1²=5,AB²=5²=25,∴QA²+QB²=20+5=25=AB²,∴△QAB为直角三角形,∠AQB=90°,∵PQ²=2²+1²=5=QB²,∴△PQB为等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案为:45°.【考点】本题考查了勾股定理及逆定理、三角形全等的判定等,熟练掌握勾股定理及逆定理是解决本类题的关键.3、【解析】【分析】根据勾股定理即可得出结论.【详解】解:设未折断的竹干长为尺,根据题意可列方程为:.故答案为:.【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4、【解析】【分析】求出AC=6,面积法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,设BE=B'E=x,则DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【详解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB•CD=AC•BC,∴CD==,在Rt△BCD中,BD=,∵将边BC沿CE折叠,使点B的对称点B'落在CD的延长线上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,设BE=B'E=x,则DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面积为AE•CD=×6×=,故答案为:.【考点】本题考查直角三角形中的折叠问题,解题的关键是掌握折叠的性质,熟练运用勾股定理.5、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC⋅BC=AB⋅h,∴h==故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键6、6【解析】【分析】设,则,在中,利用勾股定理列方程,即可求解.【详解】解:如图,由题意知,,,设,则,在中,,即,解得,因此旗杆在离底部6m位置断裂.故答案为:6.【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键.7、13【解析】【分析】将其转化为数学几何图形,如图所示,根据题意,可知B'C=5尺,设水深AC=x尺,则芦苇长(x+1)尺,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:设水深x尺,则芦苇长(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故芦苇长13尺,故答案为:13【考点】本题考查勾股定理,和列方程解决实际问题,能够在实际问题中找到直角三角形并应用勾股定理是解决本题的关键.8、45°【解析】【分析】取网格点M、N、F,连接AM、AN、BM、MF、BN,根据网格线可得到∠ABD+∠CBE=∠MAB,再根据勾股定理的逆定理证明△ABM是直角三角形,且AM=BM,即可得解.【详解】取网格点M、N、F,连接AM、AN、BM、MF、BN,如图,根据网格线可知NB=1=MF,AN=3,AF=2,由网格图可知∠CBE=∠FAM,∠ABD=∠NAB,则∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案为:45°.【考点】本题考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知识,求得∠ABD+∠CBE=∠MAB是解答本题的关键.三、解答题1、5【解析】【分析】利用勾股定理先求出的值,根据折叠的性质可得出,,,设,列方程求解即可.【详解】解:由题意可知:,,则,,,设,则,∴解方程得:因此,的长为所以,【考点】本题考查的知识点是勾股定理的应用,根据题意构造直角三角形是解此题的关键.2、(1)见解析(2)①见解析;②见解析;③BG2+HG2=4AE2.【解析】【分析】(1)证△ADE≌△CDF(SAS),得∠ADE=∠CDF,再证∠EDF=90°,即可得出结论;(2)①依题意,补全图形即可;②由直角三角形斜边上的中线性质得DG=EF,BG=EF,即可得出结论;③先证△DEF是等腰直角三角形,得∠DEG=45°,再证DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后证△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依题意,补全图形如图所示:②证明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中点,∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,证明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G为EF的中点,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF−∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.【考点】本题是四边形综合题,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质等知识;熟练掌握正方形的性质和等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.3、【解析】【分析】过点C作CD⊥AM垂足为D,设CD=x,根据直角三角形的性质求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,进而求得AC的长.【详解】解:过点C作CD⊥AM垂足为D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,设CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海岛C的距离是海里.【考点】本题主要考查了直角三角形的性质、勾股定理等知识点,掌握直角三角形的边角关系是正确解答的前提,作垂线构造直角三角形是解决问题的关键.4、△ABC为直角三角形或等腰三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【详解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国阻燃型保温管材行业市场前景预测及投资价值评估分析报告
- 公路工程施工监理与质量验收方案
- 公路桥梁施工与监控技术方案
- 热力系统运行维护与管理方案
- 企业厂房拆迁协议书
- 低碳排水系统设计与实施方案
- 销售系统开发合同范本
- 企业脱贫帮扶协议书
- 中考句式翻译真题及答案
- 入学就业保障协议书
- 宋小宝小品《碰瓷》完整台词
- 酸性油气田腐蚀与防护
- 《食物在口腔里的变化》教学设计
- 生态文明建设理论与实践智慧树知到答案章节测试2023年东北林业大学
- 建筑装饰设计收费标准(完整版)资料
- GB/T 31845-2015电工电子设备机械结构热设计规范
- GB/T 20308-2020产品几何技术规范(GPS)矩阵模型
- GB/T 19975-2005高强化纤长丝拉伸性能试验方法
- GB/T 15406-1994土工仪器的基本参数及通用技术条件
- 大宗商品交易
- 2021-2022年分层教学教研记录
评论
0/150
提交评论