基础强化人教版8年级数学下册《平行四边形》章节练习试题(详解)_第1页
基础强化人教版8年级数学下册《平行四边形》章节练习试题(详解)_第2页
基础强化人教版8年级数学下册《平行四边形》章节练习试题(详解)_第3页
基础强化人教版8年级数学下册《平行四边形》章节练习试题(详解)_第4页
基础强化人教版8年级数学下册《平行四边形》章节练习试题(详解)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为()A.22 B.18 C.14 D.102、如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为()A.2 B. C. D.13、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则△AEF的面积为()A.2 B.3 C.4 D.54、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为()A.16 B.12 C.8 D.45、已知菱形的边长为6,一个内角为60°,则菱形较长的对角线长是()A. B. C.3 D.6第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.2、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为_____.3、如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.4、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.5、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若DE∥AB交AC于点E,证明:△ADE是等腰三角形;(2)若BC=12,DE=5,且E为AC中点,求AD的值.2、如图:在中,,,点为的中点,点为直线上的动点(不与点,重合),连接,,以为边在的上方作等边,连接.(1)是________三角形;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.3、△ABC为等边三角形,AB=4,AD⊥BC于点D,E为线段AD上一点,AE=.以AE为边在直线AD右侧构造等边△AEF.连结CE,N为CE的中点.

(1)如图1,EF与AC交于点G,①连结NG,求线段NG的长;②连结ND,求∠DNG的大小.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α.M为线段EF的中点.连结DN、MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论.4、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.5、如图,是的中位线,延长到,使,连接.求证:.

-参考答案-一、单选题1、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2、B【解析】【分析】由折叠的性质可得,∠BMN=90°,FB=AB=2,由此利用勾股定理求解即可.【详解】解:∵把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,AB=2,∴,∠BMN=90°,∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,则在Rt△BMF中,,故选B.【点睛】本题主要考查了正方形与折叠,勾股定理,解题的关键在于能够熟练掌握折叠的性质.3、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,,,由此求解即可.【详解】解:如图所示,连接AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分别是BC,CD的中点,∴,,,∴,故选B.【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质.4、C【解析】【分析】由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=BO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.5、B【解析】【分析】根据一个内角为60°可以判断较短的对角线与两邻边构成等边三角形,求出较长的对角线的一半,再乘以2即可得解.【详解】解:如图,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等边三角形,菱形的边长为6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形较长的对角线长BD是:2×3=6.故选:B.【点睛】本题考查了菱形的性质和勾股定理,等边三角形的判定,解题关键是熟练运用菱形的性质和等边三角形的判定求出对角线长.二、填空题1、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可.【详解】解:四边形ABCD是平行四边形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角对等边可知:,,情况1:当与相交时,如下图所示:,,,情况2:当与不相交时,如下图所示:,,故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.2、80°【解析】【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.3、【解析】【分析】设则再利用矩形的性质建立方程求解从而可得答案.【详解】解:四边形BHDG为菱形,设AD=3AB,设则矩形ABCD,解得:故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.4、4【解析】【分析】过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.【详解】如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,∵四边形ABCD的对角线交点为O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案为:4.【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.5、10【解析】【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形,是等边三角形,故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.三、解答题1、(1)见解析;(2)8【分析】(1)根据“三线合一”性质先推出∠BAD=∠CAD,再结合平行线的性质推出∠BAD=∠ADE,从而得到∠ADE=∠EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2DE,然后在Rt△ADC中利用勾股定理求解即可.【详解】(1)证:∵在△ABC中,AB=AC,∴△ABC为等腰三角形,∵AD⊥BC于点D,∴由“三线合一”知:∠BAD=∠CAD,∵DE∥AB交AC于点E,∴∠BAD=∠ADE,∴∠CAD=∠ADE,即:∠ADE=∠EAD,∴AE=DE,∴△ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,∵BC=12,∴DC=6,∵E为AC中点,∴DE为△ABC的中位线,∴AB=2DE,∴AC=AB=2DE=10,在Rt△ADC中,,∴AD=8.【点睛】本题考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键.2、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明△OBC是等边三角形;

(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到.【详解】(1)∵∠ACB=90°,∠A=30°,O是AB的中点,∴,∴△OBC是等边三角形,故答案为:等边;(2)由(1)可知,,,是等边三角形,,,,即,在和中,,;(3)成立,证明:由(1)可知,,,是等边三角形,,,,即,在和中,,.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.3、(1)①;②;(2)的大小是定值,证明见解析.【分析】(1)①先根据等边三角形的性质、勾股定理可得,从而可得,再利用勾股定理可得,然后根据等边三角形的性质可得,最后根据直角三角形斜边上的中线等于斜边的一半即可得;②先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据四边形的内角和即可得;(2)连接,先证出,根据全等三角形的性质可得,从而可得,再根据三角形中位线定理可得,然后根据三角形的外角性质、角的和差即可得出结论.【详解】解:(1)①∵是等边三角形,,,∴,∴,∵,∴,∴,∵是等边三角形,,,∴,即,又∵点为的中点,∴;②如图,连接,由(1)①知,,∵,点为的中点,∴,,,∴;(2)的大小是定值,证明如下:如图,连接,∵和都是等边三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵点为的中点,点为的中点,∴,∴,∵,即点是的中点,∴,∴,∵,∴,∴的大小为定值.【点睛】本题考查了等边三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形中位线定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和利用到三角形中位线定理是解题关键.4、(1)见解析;(2)正方形ABCD的面积为【分析】(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC(三线合一),即BD⊥AC,∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论