解析卷人教版8年级数学下册《平行四边形》专项测试试卷(含答案详解版)_第1页
解析卷人教版8年级数学下册《平行四边形》专项测试试卷(含答案详解版)_第2页
解析卷人教版8年级数学下册《平行四边形》专项测试试卷(含答案详解版)_第3页
解析卷人教版8年级数学下册《平行四边形》专项测试试卷(含答案详解版)_第4页
解析卷人教版8年级数学下册《平行四边形》专项测试试卷(含答案详解版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》专项测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7 B. C.8 D.92、下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形 B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形 D.对角线相等且互相垂直的平行四边形3、如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为()A.1 B. C..2 D.24、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是()A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形5、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正确的结论有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在直角三角形ABC中,∠B=90°,点D是AC边上的一点,连接BD,把△CBD沿着BD翻折,点C落在AB边上的点E处,得到△EBD,连接CE交BD于点F,BG为△EBD的中线.若BC=4,△EBG的面积为3,则CD的长为____________2、如图,O为坐标原点,△ABO的两个顶点A(6,0),B(6,6),点D在边AB上,点C在边OA上,且BD=AC=1,点P为边OB上的动点,则PC+PD的最小值为_____.3、在四边形ABCD中,AB=BC=CD=DA=5cm,对角线AC,BD相交于点O,且AC=8cm,则四边形ABCD的面积为______cm2.4、如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点C,使得DC=BD,在直线AD左侧有一动点P满足∠PAD=∠PDB,连接PC,则线段CP长的最大值为________.5、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形中,,,且四边形是一个正方形,试问点F是的黄金分割点吗?请说明理由.(补全解题过程)2、如图,ABCD的对角线AC、BD相交于点O,BD12cm,AC6cm,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O以2cm/s的速度向点D运动.

(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时,AECF是菱形;(3)求(2)中菱形AECF的面积.3、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形.(1)如图①,在各边相等的四边形ABCD中,当AC=BD时,四边形ABCD正四边形;(填“是”或“不是”)(2)如图②,在各边相等的五边形ABCDE中,AC=CE=EB=BD=DA,求证:五边形ABCDE是正五边形;(3)如图③,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由.4、如图,已知四边形ABCD是正方形,点E是AD边上的一点(不与点A,D重合),连接CE,以CE为一边作正方形CEFG,使点F,G与点A,B在CE的两侧,连接BE并延长,交GD延长线于点H.(1)如图1,请判断线段BE与GD的数量关系和位置关系,并说明理由;(2)如图2,连接BG,若AB=2,CE=,请你直接写出的值.5、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.-参考答案-一、单选题1、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90,D是边AB的中点,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.2、D【解析】【分析】根据正方形的判定定理进行判断即可.【详解】解:A、对角线相等的平行四边形是矩形,不符合题意;B、对角线互相平分且垂直的四边形是菱形,不符合题意;对角线相等且互相垂直的平行四边形是正方形,故C选项不符合题意;D选项符合题意;故选:D.【点睛】本题考查了正方形的判定,熟知正方形的判定定理是解本题的关键.3、C【解析】【分析】根据题意连接BD,过点E作EF⊥AC于点F,根据菱形的性质可以证明三角形ABD是等边三角形,根据平移的性质可得AD∥A′E,可得,,进而求出A′E,再利用30度角所对直角边等于斜边的一半即可得出结论.【详解】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故选:C.【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌握菱形的性质.4、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:,,,,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.5、C【解析】【分析】根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.【详解】解:①∵四边形ACHI和四边形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正确;②过点B作BM⊥IA,交IA的延长线于点M,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=AI•BM=AI•AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=AD•CN=AD•AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.二、填空题1、【解析】【分析】由折叠的性质可得,,,,由勾股定理可得,,根据题意可得,,求得的长度,即可求解.【详解】解:由折叠的性质可得,,,,∴为等腰直角三角形,为的中点,∴由勾股定理可得,∴∵BG为△EBD的中线,△EBG的面积为3∴,解得∴由勾股定理得:故答案为:【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解.2、6【解析】【分析】过点D作DE⊥AB交y轴于点E,交BO于点P,得矩形ACPD,正方形OCPE,此时PC+PD的值最小.【详解】解:∵A(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如图,过点D作DE⊥AB交y轴于点E,交BO于点P,∴∠PDA=∠DAC=∠PCA=90°,∴四边形ACPD是矩形,∴AC=DP,PC=AD,同理可得四边形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四边形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此时PC+PD的值最小,为6.故答案为:6.【点睛】本题考查了矩形的判定与性质,正方形的判定以及垂线段最短问题.3、24【解析】【分析】根据题意作图,得出四边形为菱形,再根据菱形的性质进行求解面积即可.【详解】解:根据题意作图如下:由题意得四边形为菱形,,且平分,,,由勾股定理:,,,故答案为:24.【点睛】本题考查了菱形的判定及形,勾股定理,解题的关键是判断四边形是菱形.4、##【解析】【分析】如图,取AD的中点O,连接OP、OC,然后求出OP、OC的长,最后根据三角形的三边关系即可解答.【详解】解:如图,取AD的中点O,连接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值为.故填:.【点睛】本题主要考查了直角三角形斜边中线的性质、勾股定理等知识点,解题的关键在于正确添加常用辅助线,进而求得OP、OC的长.5、【解析】【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,、是的邻角,是的对角,,,故答案为:,,.【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.三、解答题1、是,理由见解析【分析】根据已知得出只需求得其BF与BC的比是否符合黄金比即可.【详解】解:点F是BC的黄金分割点.理由如下:∵四边形是一个正方形,∴.又∵在矩形中,BC=AD=2,∴.∴点F是BC的黄金分割点.【点睛】此题主要考查了黄金分割点,根据已知条件和正方形的性质进行分析求解是解题关键.2、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;

(2)若是菱形,则AC垂直于BD,即有,故AB可求;

(3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴,∴,∴,∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则,,;∴当AB为时,平行四边形是菱形;(3)由(1)(2)可知当t=2s,AB=时,四边形AECF是菱形,∴EO=6−t=4,∴EF=8,∴菱形AECF的面积=.【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.3、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;(3)由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形.理由:∵AB=BC=CD=DA,∴四边形ABCD是菱形,∵AC=BD,∴四边形ABCD是正方形.∴四边形ABCD是正四边形.故答案为:是.(2)证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、△EAB中,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形.若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.4、(1)BE=DG,BE⊥DG,理由见解析;(2).【分析】(1)由“SAS”证得△GCD≌△ECB;再由全等三角形的性质和平行线的性质可得∠EBC=∠HED=∠GDC,由余角的性质可得答案;(2)连接BD,EG,由①知∠BHD=∠EHG=90°,根据勾股定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论