考点解析-江西省高安市中考数学真题分类(勾股定理)汇编必考点解析试卷(详解版)_第1页
考点解析-江西省高安市中考数学真题分类(勾股定理)汇编必考点解析试卷(详解版)_第2页
考点解析-江西省高安市中考数学真题分类(勾股定理)汇编必考点解析试卷(详解版)_第3页
考点解析-江西省高安市中考数学真题分类(勾股定理)汇编必考点解析试卷(详解版)_第4页
考点解析-江西省高安市中考数学真题分类(勾股定理)汇编必考点解析试卷(详解版)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省高安市中考数学真题分类(勾股定理)汇编必考点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使△ABC为直角三角形的概率是(

)A. B. C. D.2、我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是(

)A.5尺 B.10尺 C.12尺 D.13尺3、如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为(

)A.20dm B.25dm C.30dm D.35dm4、我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为(

)A. B.C. D.5、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为(

)A.6cm2 B.8cm2 C.10cm2 D.12cm26、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的面积是9,则小正方形的面积是(

)A.3 B.4 C.5 D.67、如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为(

)A.160 B.150 C.140 D.130第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,则AC=_________米.2、如图,在一次综合实践活动中,小明将一张边长为的正方形纸片,沿着边上一点与点的连线折叠,点是点的对应点,延长交于点,经测量,,则的面积为______.3、如图,在中,,,,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则DF的长为_________.4、如图,在四边形ABCD中,,,,,,那么四边形ABCD的面积是___________.5、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).则芦苇长_____尺.6、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_________.7、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.8、我国古代数学著作《九章算术》中的一个问题:一根竹子高1丈(1丈=10尺),折断后顶端落在离竹子底端3尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为x尺,根据题意,可列出关于x方程为:__________.三、解答题(7小题,每小题10分,共计70分)1、如图所示,△ABC的两条高AD,BE相交于点F,AC=BC.(1)求证:△ADC≌△BEC.(2)若CD=1,BE=2,求线段AC的长.2、勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中,点在线段上,点在边两侧,试证明:.3、如图所示的一块地,,,,,,求这块地的面积.4、阅读理解:课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3,4,5;5,12,13;7,24,25;9,40,41;……学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11,_________,_________;(2)若第一个数用字母(为奇数,且)表示,则后两个数用含的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律:,,,……于是他很快表示出了第二个数为,则用含的代数式表示第三个数为_________.(3)用所学知识说明(2)中用表示的三个数是勾股数.5、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,,,于A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?6、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?7、点P到y轴的距离与它到点A(-8,2)的距离都等于13,求点P的坐标。-参考答案-一、单选题1、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【详解】解:如图,,,,均可与点和组成直角三角形.,故选:C.【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).2、D【解析】【分析】依题意,芦苇的长度为直角三角形的斜边,水深为一直角边,另一直角边为5尺,由勾股定理即可列出方程,进而得到答案.【详解】解:设水深x尺,则芦苇的长度为(x+1)尺,依题意,由勾股定理,得:,解得,所以芦苇的长度为13尺.故选D.【考点】本题考查勾股定理的应用,将题目描述问题转化成直角三角形求边长的问题是解题的关键.3、B【解析】【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故选B.【考点】本题考查了平面展开——最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.4、C【解析】【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故选:C.【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键.5、A【解析】【分析】根据折叠的条件可得:,在中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点与点重合,,,根据勾股定理得:,解得:..故选:A.【考点】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.6、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积−4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案.【详解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面积为:a2+b2=9,∴2ab=15−9=6,即ab=3,∴直角三角形的面积为:,∴小正方形的面积为:,故选:A.【考点】此题主要考查了完全平方公式及勾股定理的应用,熟练应用完全平方公式及勾股定理是解题关键.7、A【解析】【分析】作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长AB交MN于点,此时,由三角形三边关系可知,故当点P运动到时最大,过点B作由勾股定理求出AB的长就是的最大值,代入计算即可得.【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,∵,,,∴,,,在中,根据勾股定理得,∴,即PA+PB的最小值是;如图所示,延长AB交MN于点,∵,,∴当点P运动到点时,最大,过点B作,则,∴,在中,根据勾股定理得,,∴,即,∴,故选A.【考点】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系.二、填空题1、【解析】【分析】首先根据BC,AC的比设出BC,AC,然后利用勾股定理列式计算求得a,即可求解.【详解】解:∵AC∶BC=1∶7,∴设AC=a,则BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案为:10.【考点】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.2、##【解析】【分析】根据题意,,进而求得,勾股定理求得,即可求得的面积.【详解】解:折叠,,,,∵四边形是正方形∴中..故答案为:【考点】本题考查了折叠的性质,勾股定理,掌握勾股定理是解题的关键.3、【解析】【分析】根据折叠的性质可得,,从而得出相应角相等,再根据角之间的关系得出,从而得出为等腰直角三角形,再根据勾股定理求出的长度,利用三角形的面积公式求出的长度,再求出、的长度,最后求出的长度.【详解】解:∵边AC沿CE翻折,使点A落在AB上的点D处,∴,∴,,,∵边BC沿CF翻折,使点B落在CD的延长线上的点处,∴,∴,∵,∴,∴为等腰直角三角形,∴,∵,,,∴,∵,∴,∴,∴.故答案为:.【考点】本题主要考查了图形的翻折变化,勾股定理的运用,等腰直角三角形的判定,根据折叠的性质求得相应的角是解答本题的关键.4、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出△BDC是直角三角形,两个三角形面积相加即可.【详解】解:连结BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四边形ABCD的面积是=S△ABD+S△BDC=+24故答案为:+24.【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、13【解析】【分析】将其转化为数学几何图形,如图所示,根据题意,可知B'C=5尺,设水深AC=x尺,则芦苇长(x+1)尺,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:设水深x尺,则芦苇长(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故芦苇长13尺,故答案为:13【考点】本题考查勾股定理,和列方程解决实际问题,能够在实际问题中找到直角三角形并应用勾股定理是解决本题的关键.6、【解析】【分析】根据折叠的性质和勾股定理即可求得.【详解】解:∵长方形纸片,∴,,根据折叠的性质可得,,,设,,根据勾股定理,即,解得,故答案为:.【考点】本题考查折叠与勾股定理.能正确表示直角三角形的三边是解题关键.7、7【解析】【分析】根据勾股定理求得BC,再根据折叠性质得到AE=CE,进而由三角形的周长=AB+BC求解即可.【详解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.【考点】本题考查勾股定理、折叠性质,熟练掌握勾股定理是解答的关键.8、【解析】【分析】设折断处离地面的高度为x尺,根据勾股定理列出方程即可【详解】解:设折断处离地面的高度为x尺,根据题意可得:故答案为:【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.三、解答题1、(1)见解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可证∠DAC=∠CBE,根据AAS可证△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根据勾股定理可求.(1)证明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考点】本题考查了全等三角形的判定与性质,勾股定理,熟练掌握全等三角形的判定与性质是解题的关键.2、见解析.【解析】【分析】首先连结,作延长线于,则,根据,易证,再根据,,两者相等,整理即可得证.【详解】证明:连结,作延长线于,则即,∴∴即有:∴【考点】本题考查了勾股定理的证明,用两种方法表示出四边形ADFB的面积是解本题的关键.3、384【解析】【分析】连接,勾股定理求得,勾股定理的逆定理证明为直角三角形,进而根据三角形的面积公式计算和的面积之差即可.【详解】解:连接,在直角中,,,由,解得,在中,,,,∵,∴,∴为直角三角形,要求这块地的面积,求和的面积之差即可,,答:这块地的面积为.【考点】本题考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解题的关键.4、(1)60,61(2)(3)见解析【解析】【分析】(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一;(3)依据勾股定理的逆定理进行证明即可.(1)解:∵3、4、5;5、12、13;7、24、25;9、40、41;…,∴11,60,61;故答案为:60,61;(2)解:第一个数用字母a(a为奇数,且a≥3)表示,第二数为;则用含a的代数式表示第三个数为;故答案为:;(3)解:∵,,∴,又∵a为奇数,且a≥3,∴由a,,三个数组成的数是勾股

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论