




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,在△ABC中,点D、E分别是AB、AC的中点,AC=10,点F是DE上一点.DF=1.连接AF,CF.若∠AFC=90°,则BC的长是()A.18 B.16 C.14 D.122、在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为(
)A.(2,﹣1) B.(﹣1,﹣2) C.(1,﹣2) D.(﹣2,1)3、一次函数的图象大致是(
)A. B.C. D.4、若函数y=2x+a与y=x的图象交于点P(2,b),则关于x,y的二元一次方程组的解是()A. B. C. D.5、已知点A(x1,3),B(x2,﹣1)在一次函数y=﹣x﹣2的图象上,则()A.x1≤x2 B.x1≥x2 C.x1<x2 D.x1>x26、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.24 B.48 C.72 D.967、若在实数范围内有意义,则的取值范围是(
)A. B. C. D.8、下列四个数中,是无理数的为(
)A.0 B. C.-2 D.0.5第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA于点E,DF交AC于F,连接EF,BD=nDC,当n=_____时,△DEF为等腰直角三角形.2、在Rt△ABC中,D是斜边AB的中点,AD=10,则CD的长是______.3、已知函数y1=-2x与y2=x+b的图像相交于点A(-1,2),则关于x的不等式-2x>x+b的解集是_____.4、若+(y﹣1)2=0,则(x+y)2021等于_____.5、如图,F为正方形ABCD的边CD上一动点,AB=2,连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为_____.6、如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S7的值为_____.7、如图,直线与直线交于点,由图象可知,不等式的解为______.三、解答题(7小题,每小题10分,共计70分)1、如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.若AC=BC,CE=CD.(1)猜想线段BE,AD之间的数量关系及所在直线的位置关系,写出结论并说明理由;(2)现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.2、(﹣1)2021.3、如图,已知△ABC是锐角三角形(AB>AC).(1)请用无刻度直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,在线段MN上找一点O,使点O到边AB、BC的距离相等;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=10,BC=12,求ON的长.4、计算.5、如图,已知线段,利用尺规作图的方法作一个正方形,使为正方形的对角线(保留作图痕迹,不要求写作法).6、计算:7、计算题(1)计算:;(2)化简:.-参考答案-一、单选题1、D【解析】【分析】根据直角三角形的性质求出EF,进而求出DE,根据三角形中位线定理计算,得到答案.【详解】解:∵∠AFC=90°,点E是AC的中点,AC=10,∴EF=AC=×10=5,∵DF=1,∴DE=DF+EF=6,∵点D、E分别是AB、AC的中点,∴BC=2DE=12,故选:D.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.2、C【解析】【分析】因为坐标原点O是线段AB的中点,所以AB两点关于原点对称.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵坐标原点O是线段AB的中点,∴AB两点关于原点对称,∵点A的坐标为(﹣1,2),∴点B的坐标为(1,-2)故选:C【点睛】本题考查了关于原点对称点的性质.解题的关键是知道关于原点对称点的横坐标互为相反数,纵坐标也互为相反数.3、C【解析】【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.【详解】解:∵一次函数中,<0,∴一次函数的图象经过一、二、四象限.故选C.【点睛】此题主要考查一次函数图象,熟练掌握k、b的符号与图象的位置关系是解题关键.4、A【解析】【分析】将点代入y=x即可求得点的坐标,根据由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.【详解】函数y=2x+a与y=x的图象交于点P(2,b)即二元一次方程组的解是故选A【点睛】本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.5、C【解析】【分析】根据k=-1<0,得出函数图像从左上到右下变化,即函数值y随x的增大而减小,根据函数值3>-1,得出x1<x2即可.【详解】解:∵一次函数y=﹣x﹣2,k=-1<0,∴函数图像从左上到右下变化,即函数值y随x的增大而减小,∵3>-1,∴x1<x2.故选C.【点睛】本题考查一次函数的性质,掌握一次函数的性质是解题关键.6、B【解析】【分析】由菱形的性质得OA=OC=6,OB=OD,AC⊥BD,则AC=12,再由直角三角形斜边上的中线性质求出BD的长度,然后由菱形的面积公式求解即可.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH=2×4=8,∴菱形ABCD的面积=故选:B.【点睛】本题主要考查了菱形的性质,直角三角形的斜边上的中线性质,菱形的面积公式等知识;熟练掌握菱形的性质,求出BD的长是解题的关键.7、A【解析】【分析】直接利用二次根式中的被开方数是非负数,求出答案即可.【详解】解:∵在实数范围内有意义,∴3-x≥0,∴x≤3,故选:A【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.8、B【解析】【分析】根据无限不循环小数是无理数对各选项进行判断即可.【详解】解:A、C、D中均为有理数,不符合题意;B中为无理数,符合题意,故选:B.【点睛】本题考查了无理数.解题的关键在于理解无理数.二、填空题1、或1【解析】【分析】分两种情况:情况①:当∠DEF=90°时,由题意得出EF∥BC,作FG⊥BC于G,证出△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出结果;情况②:当∠EFD=90°时,求出∠DEF=45°,得出E与A重合,D是BC的中点,BD=CD,即可得出结果.【详解】解:分两种情况:情况①:当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∴∠EDB=∠FGB=90°,∴ED∥FG,∴四边形EDGF为矩形,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,∴BD=DE,当△DEF为等腰直角三角形时,DE=EF,此时四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=DC,∴n=;情况②:当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.故答案为:或1.【点睛】本题考查了等腰直角三角形的判定与性质、平行线的判定、正方形的判定与性质;熟练掌握等腰直角三角形的性质,分两种情况讨论是解决问题的关键.2、10【解析】【分析】根据斜边中线等于斜边一半,直接求解即可.【详解】解:∵∠ACB=90°,D为斜边AB的中点,∴AD=BD=10,∴CD=AD=10.故答案为:10.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.3、x<-1【解析】【分析】在同一坐标系中画出两个函数的图象,根据图象即可得出答案.【详解】解:函数y1=-2x与y2=x+b的图象如图所示:要满足-2x>x+b,即y1>y2,则图象上两直线交点的左边符合题意,即x<-1,故答案为:x<-1.【点睛】此题考查了一元一次不等式与一次函数图象的关系,用一次函数的函数思想求不等式的解集是比较常见的题型,关键在于理解不等关系反映在函数图象上的几何意义.4、-1【解析】【分析】利用非负数的性质求出x与y的值,代入原式计算即可求出值.【详解】解:∵+(y﹣1)2=0,∴x+2=0,y-1=0,解得:x=-2,y=1,则原式=(-2+1)2021=(-1)2021=-1.故答案为:-1.【点睛】此题考查了非负数的性质:算术平方根,以及偶次方,熟练掌握各自的性质是解本题的关键.5、##【解析】【分析】取AB的中点O,连接OG,OC,根据的长为定值,当O,G,C共线时,CG的值最小,证明CF=CG=BH即可解决问题.【详解】解:如图,取AB的中点O,连接OG,OC.四边形ABCD是正方形,ABC=90°,AB=2,OB=OA=1,,AH⊥BF,AGB=90°,AO=OB,OG=AB=1,,当O、G、C共线时,CG的值最小,最小值=,此时如图,OB=OG=1,OBG=OGB,ABCD,OBG=CFG,OGB=CGF,CGF=CFG,CF=CG=,ABH=BCF=AGB=90°,∠BAH+∠ABG=90°,∠ABG+∠CBF=90°,∠BAH=∠CBF,AB=BC,△ABH△BCF(ASA),BH=CF=,CH=BC-BH=2-()=3-,故答案为:【点睛】本题考查正方形的性质,全等三角形的判定和性质,直角三角形斜边中线的性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线.6、【解析】【分析】根据题意求出S2=()1,S3=()2,S4=()3,…,根据规律解答.【详解】解:由题意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,则Sn=()n-1,∴S7=()6=.故答案为:.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=()n-1”.7、【解析】【分析】观察图象知,直线的图象位于直线的图象上方或两直线相交时,函数的函数值大于或等于函数的函数值,从而可求得的解.【详解】由图象知:不等式的解为故答案为:【点睛】本题考查了两直线相交与一元一次不等式的关系,数形结合是关键.三、解答题1、(1)BE=AD,BE⊥AD;理由见解析(2)BE=AD,BE⊥AD仍然成立;证明见解析【解析】【分析】(1)延长BE,交AD于点F,证明△BCE≌△ACD,得到∠EBC+∠ADC=90°,从而得到∠BFD=90°即可得证.(2)仿照(1)的思路,证明△ACD≌△BCE,得到∠AFG+∠CAD=90°,从而得证∠AGF=90°.(1)BE=AD,BE⊥AD;理由:在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,延长BE,交AD于点F,∴∠BFD=90°,∴BE⊥AD.(2)BE=AD,BE⊥AD仍然成立;理由:设BE与AC的交点为点F,BE与AD的交点为点G,如图,∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠CAD=∠CBE.∵∠BFC=∠AFG,∠BFC+∠CBE=90°,∴∠AFG+∠CAD=90°.∴∠AGF=90°.∴BE⊥AD.【点睛】本题考查了直角三角形的全等证明和性质,运用两角互余证明垂直,旋转的性质,熟练掌握全等三角形的判定,灵活运用互余关系是解题的关键.2、【解析】【分析】首先根据,,,,再代入计算即可.【详解】原式==【点睛】本题主要考查了实数的计算,掌握有理数的乘方,绝对值的性质,立方根和平方根是解题的关键.3、(1)作图见详解;(2)3.【解析】【分析】(1)根据要求先作BC的垂直平分线,再作出∠B的角平分线,交点即为O点;(2)过点O作OH⊥AB于点H.利用勾股定理求出MN,证明OH=ON,利用面积法求解即可.(1)解:如图,直线MN,点O即为所求;(2)过点O作OH⊥AB于点H.∵BO平分∠ABC,ON⊥BC,OH⊥AB,∴ON=OH,∵MN垂直平分线段BC,∴BN=CN=6,∵BM=10,∴MN===8,∵S△BMN=S△BMO+S△BO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电池加酸考试题目及答案
- 中国含氟聚合物薄膜项目创业计划书
- 德育副校长考试题及答案
- 2025年土地占用申请报告-土地占用申请
- 中国功能水制造行业调研及发展趋势分析报告
- 中国铁塔青岛市分公司招聘考试真题2024
- 中国磷肥制造项目创业计划书
- 大学读书考试题目及答案
- 大二刑法考试题及答案
- 非协议书就业登记表
- CNAS体系基础知识培训课件
- 部编人教版六年级道德与法治上册全册教学课件
- 化工厂员工电气安全教育培训课件
- 特种设备制造内审及管理评审资料汇编经典版
- 河蟹健康养殖与常见疾病防治技术课件
- 小学二年级《爱国主义教育》主题班会课件
- 2023届浦东新区高三英语一模试卷及答案
- 儿童牙外伤讲稿
- GB∕T 41491-2022 配网用复合材料杆塔
- 2022年《临床助理医师》考试题库及答案(含各题型)
- 民事案件代理风险告知书
评论
0/150
提交评论