




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》单元测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、在ABCD中,添加以下哪个条件能判断其为菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD2、如图所示,在ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F,,则ABCD的面积为(
)A.24 B.32 C.40 D.483、平行四边形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=OC=,则点B的坐标为()A.(,1) B.(1,) C.(+1,1) D.(1,+1)4、如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则最小值为()A.2 B.3 C.4 D.65、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A.5 B.2 C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为_____.2、如图,点E,F在正方形ABCD的对角线AC上,AC=10,AE=CF=3,则四边形BFDE的面积为_____.3、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.4、菱形的对角线之比为3:4,且面积为24,则它的对角线分别为________.5、如图,△ABC中,D、E分别是AB、AC的中点,若DE=4cm,则BC=_____cm.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE=°时,四边形BFDE是菱形.2、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)的面积;(2)△AOD的周长.
3、如图所示,在△ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,AB=2CD,求证:DG⊥CE.
4、如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若DE∥AB交AC于点E,证明:△ADE是等腰三角形;(2)若BC=12,DE=5,且E为AC中点,求AD的值.5、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点.
(1)求证:四边形是平行四边形;(2)当是多少度时,四边形为菱形?试说明理由.-参考答案-一、单选题1、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解.【详解】A、∵AB⊥BC,∴∠ABC=90°,又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,ABCD是矩形;故选项B、C不符合题意;D、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键.2、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得.【详解】解:∵四边形是平行四边形,,,在和中,∵,,,,则的面积为,故选:B.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键.3、C【解析】【分析】作,求得、的长度,即可求解.【详解】解:作,如下图:则在平行四边形中,,∴∴为等腰直角三角形则,解得∴故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解.4、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【详解】解:连接BP.∵四边形ABCD为正方形,面积为16,∴正方形的边长为4.∵△ABE为等边三角形,∴BE=AB=4.∵四边形ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4.故选:C.【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称—最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.5、D【解析】【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故选:D.【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.二、填空题1、80°【解析】【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.2、20【解析】【分析】连接BD,交AC于O,根据题意和正方形的性质可求得EF=4,AC⊥BD,由即可求解.【详解】解:如图,连接BD,交AC于O,∵四边形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案为:20.【点睛】本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键.3、10【解析】【分析】过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.【详解】解:过E作EF⊥AD于F,∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四边形ABEF为矩形,∴AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在Rt△FEM中,根据勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案为10.【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.4、6和8##8和6【解析】【分析】根据比例设两条对角线分别为3x、4x,再根据菱形的面积等于两对角线乘积的一半列式求出x的值即可.【详解】解:设两条对角线分别为3x、4x,根据题意得,×3x•4x=24,解得x=2(负值舍去),∴菱形的两对角线的长分别为,.故答案为:6和8.【点睛】本题考查了菱形的面积,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积的求法,需熟记.5、8【解析】【分析】运用三角形的中位线的知识解答即可.【详解】解:∵△ABC中,D、E分别是AB、AC的中点∴DE是△ABC的中位线,∴BC=2DE=8cm.故答案是8.【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.三、解答题1、(1)见解析;(2)12【分析】(1)由“SAS”可证△ABE≌△CDF;
(2)通过证明BE=DE,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD+AE=BC+CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=32°,∠ADB=22°,
∴∠ABD=∠1-∠ADB=10°,
∵∠ABE=12°,
∴∠DBE=22°,
∴∠DBE=∠ADB=22°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为:12.【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四边形ABCD是平行四边形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.3、见解析【分析】连接DE,根据直角三角形的性质得到DE=AB,再根据AB=2CD,得到CD=AB,从而可得CD=DE,根据等腰三角形的三线合一证明即可.【详解】证明:连接DE,如图:
∵AD是边BC上的高,CE是边AB上的中线,∴AD⊥BD,E是AB的中点,∴DE=AB,∵AB=2CD,∴CD=AB,∴CD=DE,∵G是CE的中点,∴DG⊥CE.【点睛】本题考查了直角三角形的性质、等腰三角形的判定和性质.解题的关键是掌握直角三角形的性质、等腰三角形的判定和性质,明确在直角三角形中,斜边上的中线等于斜边的一半.4、(1)见解析;(2)8【分析】(1)根据“三线合一”性质先推出∠BAD=∠CAD,再结合平行线的性质推出∠BAD=∠ADE,从而得到∠ADE=∠EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2DE,然后在Rt△ADC中利用勾股定理求解即可.【详解】(1)证:∵在△ABC中,AB=AC,∴△ABC为等腰三角形,∵AD⊥BC于点D,∴由“三线合一”知:∠BAD=∠CAD,∵DE∥AB交AC于点E,∴∠BAD=∠ADE,∴∠CAD=∠ADE,即:∠ADE=∠EAD,∴AE=DE,∴△ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,∵BC=12,∴DC=6,∵E为AC中点,∴DE为△ABC的中位线,∴AB=2DE,∴AC=AB=2DE=10,在Rt△ADC中,,∴AD=8.【点睛】本题考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键.5、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析【分析】(1)由题意,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大一电学考试题及答案
- 2025年外转子电机项目可行性研究报告
- 大学高铁考试题及答案
- 2025水利工程的施工承包合同
- 厨房管理考试题及答案
- 2025年中国桃醛项目创业计划书
- 急诊医学考试试题及答案
- 机械质量检测考试试题及答案
- 2025桐乡市绿茶收购合同
- 初级焊工考试题及答案txt
- DL-T5588-2021电力系统视频监控系统设计规程
- 医学伦理与医生护士职业道德的边界探讨
- 母婴护理中心(月子会所)项目实施方案
- 作业指导书管理规范规章制度
- 篮球空白战术板
- 医保工作各小组和医保相关制度
- 2023年江苏泰州现代农业发展集团有限公司招聘笔试题库含答案解析
- 第五章 亲核取代反应
- 医院医疗设备购置申请表(采购单)
- 2022年中交营口液化天然气有限公司招聘笔试题库及答案解析
- 《消防安全技术实务》课本完整版
评论
0/150
提交评论