解析卷-沪科版9年级下册期末试卷附完整答案详解【各地真题】_第1页
解析卷-沪科版9年级下册期末试卷附完整答案详解【各地真题】_第2页
解析卷-沪科版9年级下册期末试卷附完整答案详解【各地真题】_第3页
解析卷-沪科版9年级下册期末试卷附完整答案详解【各地真题】_第4页
解析卷-沪科版9年级下册期末试卷附完整答案详解【各地真题】_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是()A.30° B.36° C.60° D.72°2、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为()A. B. C.3 D.3、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A.1cm B.2cm C.2cm D.4cm4、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().A.90° B.100° C.120° D.150°5、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()A.AM=BM B.CM=DM C. D.6、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A. B. C. D.7、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是()A.0.560 B.0.580 C.0.600 D.0.6208、下列事件为随机事件的是()A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于7第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)2、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为_______.3、如果点与点B关于原点对称,那么点B的坐标是______.4、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.5、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.6、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.7、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.三、解答题(7小题,每小题0分,共计0分)1、根据要求回答以下视图问题:(1)如图①,它是由5个小正方体摆成的一个几何体,将正方体①移走后,新几何体与原几何体相比,视图没有发生变化;(2)如图②,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);(3)如图③,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示).2、电影《长津湖》以抗美援朝战争第二次战役中的长津湖战役为背景,讲述71年前,中国人民志愿军赴朝作战,在极寒严酷环境下,东线作战部队凭着钢铁意志和英勇无畏的战斗精神一路追击,奋勇杀敌的真实历史.为纪念历史,缅怀先烈,我校团委将电影中的四位历史英雄人物头像制成编号为A、B、C、D的四张卡片(除编号和头像外其余完全相同),活动时学生根据所抽取的卡片来讲述他们在影片中波澜壮阔、可歌可泣的历史事迹.规则如下:先将四张卡片背面朝上,洗匀放好,小强从中随机抽取一张,然后放回并洗匀,小叶再从中随机抽取一张.请用列表或画树状图的方法求小强和小叶抽到的两张卡片恰好是同一英雄人物的概率.3、如图,在⊙O中,弦AC与弦BD交于点P,AC=BD.(1)求证AP=BP;(2)连接AB,若AB=8,BP=5,DP=3,求⊙O的半径.4、在直角坐标平面内,三个顶点的坐标分别为、、(正方形网格中每个小正方形的边长是一个单位长度).(1)将向下平移4个单位长度得到的,则点的坐标是____________;(2)以点B为位似中心,在网格上画出,使与位似,且位似比为2:1,求点的坐标;(3)若是外接圆,求的半径.5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.6、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和.若旋转后M、N两点重合成一点C(即构成),设.(1)的周长为_______;(2)若,求x的值.7、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC.作AELOB于E、AF⊥OC于F.∴、(依据是①)∵,∴(依据是②).∵,.∴BC是的直径(依据是③).∴∵,∴A的坐标为(④)的半径为⑤-参考答案-一、单选题1、B【分析】求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵正五边形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故选:B.【点睛】本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.2、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接,,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.3、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于设半径为r,即OA=OB=AB=r,OM=OA•sin∠OAB=,∵圆O的内接正六边形的面积为(cm2),∴△AOB的面积为(cm2),即,,解得r=4,故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.4、D【分析】将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,,可将绕点逆时针旋转得,如图,连接,,,,为等边三角形,,,在中,,,,,为直角三角形,且,.故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.5、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,,,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.6、A【分析】如图,记过A,G,H三点的圆为则是,的垂直平分线的交点,记的交点为的交点为延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G,H三点的圆为则是,的垂直平分线的交点,记的交点为的交点为延长交于为的垂直平分线,结合正方形的性质可得:四边形为正方形,则设而AB=2,CD=3,EF=5,结合正方形的性质可得:而又而解得:故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G,H三点的圆的圆心是解本题的关键.7、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.8、B【分析】根据事件发生的可能性大小判断.【详解】解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=,r=2,∴扇形的弧长=.故答案为:.【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.2、0.880【分析】大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.【详解】解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,从上表可以看出,频率成活的频率,即稳定于0.880左右,∴估计这种幼树移植成活率的概率约为0.88.故答案为:0.880.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.3、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为;故答案为:.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.4、30【分析】设袋中红球有x个,根据题意用红球数除以白球和红球的总数等于红球的频率列出方程即可求出红球数.【详解】解:设袋中红球有x个,根据题意,得:,解并检验得:x=30.所以袋中红球有30个.故答案为:30.【点睛】本题考查了利用频率估计概率,解决本题的关键是用频率的集中趋势来估计概率,这个固定的近似值5、4【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.【详解】解:设一直角边长为x,另一直角边长为(6-x),∵三角形是直角三角形,∴根据勾股定理,整理得:,解得,这个直角三角形的斜边长为外接圆的直径,∴外接圆的半径为cm,三角形面积为.故答案为;.【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.6、105【分析】(1)如图,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【详解】解:如图作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10.∴AP的最小值是10;(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,∵,是等边三角形,∴,∴PC的最小值为5.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.7、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.【详解】解:由旋转得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴阴影部分的面积==,故答案为:..【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.三、解答题1、(1)主(2)见解析(3)见解析【分析】(1)根据移开后的主视图和没有移开时的主视图一致即可求解;(2)根据题意画出主视图即可;(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可.(1)将正方体①移走后,新几何体与原几何体相比主视图没有变化,如图,故答案为:主(2)图②的主视图如图,(3)图③的左视图如图,【点睛】本题考查了画三视图,根据立体图形得出三视图是解题的关键.2、【分析】根据题意列出树状图,根据概率公式即可求解.【详解】由题意做树状图如下:故小强和小叶抽到的两张卡片恰好是同一英雄人物的概率为.【点睛】此题考查了用列表法或树状图法求概率,解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比.3、(1)证明见解析;(2).【分析】(1)连接,先证出,再根据圆周角定理可得,然后根据等腰三角形的判定即可得证;(2)连接,并延长交于点,连接,过作于点,先根据线段垂直平分线的判定与性质可得,再根据线段的和差、勾股定理可得,然后根据直角三角形全等的判定定理证出,根据全等三角形的性质可得,最后在中,利用勾股定理可得的长,从而可得的长,在中,利用勾股定理即可得.【详解】证明:(1)如图,连接,,,,即,,;(2)连接,并延长交于点,连接,过作于点,,,是的垂直平分线,,,,,在和中,,,,设,则,在中,,即,解得,在中,,即的半径为.【点睛】本题考查了圆周角定理、直角三角形全等的判定定理与性质、勾股定理、垂径定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.4、(1)(2,-2)(2)图见解析,(1,0)(3)【分析】(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)证明是直角三角形,根据直角三角形外切圆半径公式计算即可.(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)由图可知:∵,,∴∴是直角三角形,∴能盖住的最小圆即为外接圆,设其半径为R;则【点睛】本题考查作图—平移变换,作图—位似变换、三角形外接圆,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.5、2+【分析】连接AC,CM,AB,过点C作CH⊥O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论