




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列各数中,无理数是()A. B.3.14 C. D.2、二次根式有意义,则x满足的条件是()A.x<2 B.x>2 C.x≥2 D.x≤23、下列命题为真命题的是(
)A.内错角相等,两直线平行 B.是最简二次根式C.1的平方根是1 D.一般而言,一组数据的方差越大,这组数据就越稳定4、如图,已知中,,是的中位线,,,则(
)A. B. C. D.5、若函数y=2x+a与y=x的图象交于点P(2,b),则关于x,y的二元一次方程组的解是()A. B. C. D.6、如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则的大小为(
)A.2cm B.3cm C.4.8cm D.5cm7、如图,点A的坐标是(2,2),若点P在x轴上,且△AOP是等腰三角形,则点P的坐标不可能是()A.(2,0) B.(4,0) C.(﹣,0) D.(3,0)8、如图,在一矩形纸条中,,将纸条沿折叠,点C的对应点为,若,则折痕的长为(
)A.2 B. C. D.4第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,△OAB1,△B1A1B2,△B2A2B3,…,△BnAnBn+1都是面积为的等边三角形,边AO在y轴上,点B1,B2,B3,…,Bn,Bn+1都在直线y=x上,点A1,A2,A3,...,An都在直线y=x的上方,观察图形的构成规律,用你发现的规律直接写出点A2022的坐标为_____.2、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是_______;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为______.3、在直角坐标系中等腰直角三角形在如图所示的位置,点的横坐标为2,将绕点按逆时针方向旋转,得到△,则点的坐标为__.4、如图,四边形ABCD和四边形OMNP都是边长为4的正方形,点O是正方形ABCD对角线的交点,正方形OMNP绕点O旋转过程中分别交AB,BC于点E,F,则四边形OEBF的面积为_______.5、已知,则x的值为_________.6、已知函数y=(2m﹣4)x+m2﹣9(x是自变量)的图象只经过二、四象限,则m=_____.7、如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的坐标为______.三、解答题(7小题,每小题10分,共计70分)1、计算.2、如图,在△ABC中,∠ACB=90°,BC>AC,CD⊥AB于点D,点E是AB的中点,连接CE.(1)若AC=3,BC=4,求CD的长;(2)求证:BC2﹣AC2=2DE•AB;(3)求证:CE=AB.3、如图所示,一桥洞的上边是半圆,下边是长方形.已知半圆的直径为2m,长方形的另一边是1m,有一辆厢式小货车,高1.5米,宽1.6米,这辆小货车能否通过此桥洞?通过计算说明理由.4、已知:如图,一次函数的图像分别与x轴、y轴相交于点A、B,且与经过x轴负半轴上的点C的一次函数y=kx+b的图像相交于点D,直线CD与y轴相交于点E,E与B关于x轴对称,OA=3OC.(1)直线CD的函数表达式为______;点D的坐标______;(直接写出结果)(2)点P为线段DE上的一个动点,连接BP.①若直线BP将△ACD的面积分为两部分,试求点P的坐标;②点P是否存在某个位置,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.5、如图,已知线段,利用尺规作图的方法作一个正方形,使为正方形的对角线(保留作图痕迹,不要求写作法).6、已知:在菱形中,点E,O,F分别为AB,AC,AD的中点,连接,.求证:;7、(﹣1)2021.-参考答案-一、单选题1、D【解析】【分析】根据无理数是无限不循环小数进行逐项判断即可.【详解】解:A、-2是有理数,不符合题意;B、3.14是有理数,不符合题意;C、是有理数,不符合题意;D、是无理数,符合题意,故选:D.【点睛】本题主要考查无理数,解答的关键掌握无理数与有理数的概念:有理数包含整数和分数、无理数为无限不循环小数.2、B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:根据题意得:x﹣2>0,解得,x>2.故选:B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.3、A【解析】【分析】根据平行线的判定,最简二次根式,平方根的性质,方差的意义,逐项判断即可求解.【详解】解:A、内错角相等,两直线平行,原命题是真命题,故本选项符合题意;B、被开方数中有分母不是最简二次根式,原命题是假命题,故本选项不符合题意;C、1的平方根是,原命题是假命题,故本选项不符合题意;D、一般而言,一组数据的方差越大,这组数据就越不稳定,原命题是假命题,故本选项不符合题意;【点睛】本题主要考查了平行线的判定,最简二次根式,平方根的性质,方差的意义,真假命题的判定,熟练掌握平行线的判定,最简二次根式,平方根的性质,方差的意义是解题的关键.4、C【解析】【分析】在中利用勾股定理即可求出AC的长,再根据三角形中位线的性质,即可求出DE的长.【详解】解:在中,,是的中位线,,故选:C.【点睛】本题考查勾股定理和三角形中位线的性质,掌握三角形的中位线平行于三角形的第三边,并且等于第三边的一半是解题关键.5、A【解析】【分析】将点代入y=x即可求得点的坐标,根据由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.【详解】函数y=2x+a与y=x的图象交于点P(2,b)即二元一次方程组的解是故选A【点睛】本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.6、B【解析】【分析】根据折叠的性质可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列式计算即可得解.【详解】解:由折叠的性质可得,AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10,∴BE=AB-AE=10-6=4,设CD=DE=x,则DB=BC-CD=8-x,在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,解得x=3,即CD=3cm,故选:B.【点睛】本题考查了翻折变换的性质,以及勾股定理,熟记性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.7、D【解析】【分析】先根据勾股定理求出OA的长,再根据①AP=PO;②AO=AP;③AO=OP分别算出P点坐标即可.【详解】解:点A的坐标是(2,2),根据勾股定理可得:OA==,①若AP=PO,可得:P(2,0),②若AO=AP可得:P(4,0),③若AO=OP,可得:P(,0)或(-,0),故点P的坐标不可能是:(3,0).故选:D.【点睛】此题主要考查了坐标与图形的性质,等腰三角形的判定,勾股定理,关键是掌握等腰三角形的判定:有两边相等的三角形是等腰三角形,再分情况讨论.8、B【解析】【分析】设交AD于点H,由四边形ABCD是矩形,⊥BC得到∠EHF=90°,四边形ABEH为矩形,得到EH=AB=2,由折叠的性质可知∠HEF=∠EFH=∠HEC=45°,得到△HEF为等腰直角三角形,再利用勾股定理得到EF的长.【详解】解:如图,设交AD于点H,∵四边形ABCD是矩形∴AD∥BC
∠A=∠B=90°∵⊥BC∴⊥AD于点H∠HEC=∠HEB=90°∴∠EHF=90°四边形ABEH为矩形∵AB=2∴EH=AB=2由折叠的性质可知∠HEF=∠EFH=∠HEC=45°在Rt△HEF中,∠HFE=180°-∠HEF-∠EHF=45°∴EH=FH∴△HEF为等腰直角三角形在Rt△HEF中,由勾股定理得EF2=HE2+HF2==8∴EF==2故选:B【点睛】本题考查了图形的折叠问题,抓住折叠前后相关位置和数量关系的变化是正确解答的关键.二、填空题1、,【解析】【分析】过作轴,垂足为,由条件可求得,利用直角三角形的性质可求得,,可求得的坐标,同理可求得、的坐标,则可得出规律,可求得的坐标.【详解】如图,,△,△,都是边长为2的等边三角形,,,在轴上,轴,轴,过作轴,垂足为,点在在直线上,设,,是面积为的等边三角形,都是边长为的等边三角形,,,的坐标为,,同理,、,,的坐标为,,故答案为,.【点睛】本题为规律型题目,利用等边三角形和直角三角形的性质求得的坐标,从而总结出点的坐标的规律是解题的关键.2、
【解析】【分析】(1)当点B与点A重合时,CE最小,设CE=x,由勾股定理得,代入数值求出x值即可;(2)根据勾股定理求出AB,利用中线的性质得到CG=AG,过点G作GD⊥AC于D,由翻折得,求出EH,过点G作GF⊥BH,证明四边形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【详解】解:(1)当点B与点A重合时,CE最小,如图,设CE=x,则BE=8-x,由折叠得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB边上的中线,∴,AG=BG=5,∴CG=AG,过点G作GD⊥AC于D,则,∴DG=4,由翻折得,∴,∴,得,过点G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四边形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案为:,.【点睛】此题考查了翻折的性质,勾股定理的应用,等腰三角形三线合一的性质,矩形的判定定理及性质定理,直角三角形斜边中线的性质,熟记各知识点并应用是解题的关键.3、【解析】【分析】过点A作于C,过点作于,根据等腰直角三角形的性质求出,再根据旋转的性质可得,,然后写出点的坐标即可.【详解】解:如图,过点作于,过点作于,是等腰直角三角形,点的横坐标为2,,△是绕点逆时针旋转得到,,,,点的坐标为.故答案为:.【点睛】本题考查了坐标与图形变化----旋转,主要利用了等腰直角三角形的性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质.4、4【解析】【分析】根据正方形的性质得到OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,推出∠BOE=∠COF,根据全等三角形的判定定理得到△BOE≌△COF(ASA),于是得到结论.【详解】解:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠BOE=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD=×4×4=4,故答案为:4.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.5、5【解析】【分析】利用立方根的定义,可得,即可求解.【详解】解:∵,∴,解得:.故答案为:5【点睛】本题主要考查了立方根的定义,熟练掌握若一个数的立方等于,则这个数称为的立方根是解题的关键.6、-3【解析】【分析】根据解析式是关于x的一次函数,只经过二、四象限可知函数为正比例函数,k<0,b=0,列方程与不等式求解即可.【详解】解:函数y=(2m﹣4)x+m2﹣9是关于x的一次函数,∵函数y=(2m﹣4)x+m2﹣9(x是自变量)的图象只经过二、四象限,∴,解得,∵m=3>2舍去,m=-3<2,满足条件,∴m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.7、【解析】【分析】根据∠OPC=45°,PC=PO,证明∠BPC=∠AOP,从而证明△BPC≌△AOP,得到PB=AO=2,过点P作PD⊥y轴,求得PD,BD,DO,根据点所在象限即可确定点P的坐标.【详解】∵一次函数y=x+2的图像与坐标轴分别交于A,B两点,∴A(-2,0),B(0,2),∴OA=OB,∴∠PAO=∠CBP=45°,∵∠OPC=45°,PC=PO,∴∠PCO=∠COP=67.5°,∴∠BPC=∠AOP=22.5°,∴△BPC≌△AOP,∴PB=AO=2,过点P作PD⊥y轴,垂注为D,则PD=BD==,∴DO=OB-BD=2-,∵点P在第二象限,∴点P(,),故答案为:(,).【点睛】本题考查了一次函数与坐标轴的交点,三角形全等的判定和性质,等腰三角形的性质,坐标与象限和线段之间的关系,熟练掌握一次函数与坐标轴的交点确定,灵活运用三角形全等的判定和性质是接退的关键.三、解答题1、【解析】【分析】按照二次根式的化简方法,零指数法则,绝对值的意义,负指数幂的法则进行化简后即可得到答案.【详解】解:【点睛】本题考查了幂的运算法则、绝对值的化简、二次根式的化简等内容,关键是熟练掌握各种运算的方法.2、(1)(2)见解析(3)见解析【解析】【分析】(1)根据勾股定理求出AB,根据三角形的面积公式计算,求出CD;(2)根据题意得到BD﹣AD=2DE,根据勾股定理计算即可证明;(3)延长CE至点F,使EF=CE,连结AF,证明△AEF≌△BEC(SAS),根据全等三角形的性质得到∠B=∠EAF,AF=BC,再证明△ACF≌△CAB,得到CF=AB,证明结论.(1)解:在△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,∵∠ACB=90°,CD⊥AB,∴S△ABC=AC•BC=AB•DE,即×3×4=×5×CD,解得:CD=;(2)证明:∵点E是AB的中点,∴AE=BE,∴BD﹣AD=(BE+DE)﹣(AE﹣DE)=BE﹣AE+2DE=2DE,∵CD⊥AB,∴BC2=BD2+CD2,AC2=AD2+CD2,∴BC2﹣AC2=(BD2+CD2)﹣(AD2+CD2)=BD2﹣AD2=(BD+AD)(BD﹣AD)=AB•2DE=2DE•AB;(3)证明:延长CE至点F,使EF=CE,连结AF,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴∠B=∠EAF,AF=BC,∵∠ACB=90°,∴∠B+∠CAB=∠EAF+∠CAB=90°,∴∠CAF=∠ACB=90°,∵AC=CA,∴△ACF≌△CAB(SAS),∴CF=AB,∵CF=2CE,∴CE=AB.【点睛】本题考查的是全等三角形的判定和性质、三角形的面积计算、勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.3、能,理由见解析【解析】【分析】设半圆的圆心为O,于是得到OA=×1.6=0.8(米).过点A作直径的垂线,交半圆于点B,交长方形另一边于点C,根据勾股定理即可得到答案.【详解】解:设半圆的圆心为O,(米).过点A作直径的垂线,交半圆于点B,交长方形另一边于点C.在中,由勾股定理可得:,即.所以米.所以(米).由于1.6米>1.5米,所以小货车能通过此桥洞.【点睛】本题考查了勾股定理的应用:建立数学模型,善于观察题目的信息是解题的关键.4、(1),(-4,-6)(2)①点坐标为或;②存在,点坐标为或【解析】【分析】(1)由求出与的交点坐标,进而得到E,C两点坐标,然后代入,求解的值,进而可得直线CD的函数表达式;D点为直线AB与直线CD的交点,联立方程组求解即可.(2)①分情况求解:情况一,如图1,当P在CD上,设,过B作轴交CD于点M,将代入求解得到点M的坐标,根据,求解的值,进而得到点坐标;情况二,如图2,当P在CE上,设PB与x轴交于G,根据,解得的值,得到点坐标,设直线的解析式为,将B,G点坐标代入求解的值,得直线的解析式,P为直线与直线CD的交点,联立方程组求解即可.②分情况求解:情况一,如图3,当D落在x轴上(记为)时,作DH⊥y轴于点H,BH=OB=3,由翻折可知,,证明,,可得,PB∥x轴,可得P点纵坐标,代入解析式求解即可得点的坐标;情况二,如图4,当D落在y轴上(记为)时,作PM⊥BD,PN⊥OB,由翻折可知:,证明,有PM=PN,由,,,解得的值,将代入中得的值,即可得到点坐标.(1)解:将代入得∴点B的坐标为将代入得,解得∴点A的坐标为∴由题意知点E,C坐标分别为,将E,C两点坐标代入得解得:∴直线CD的函数表达式为;联立方程组解得∴D点坐标为;故答案为:;.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第16课 三国鼎立 同步练(含答案)统编版历史七年级上册
- 2025辽宁交投集团所属盛融万恒公司招聘1人考试参考试题及答案解析
- 2025云南昆明西山区棕树营街道办事处经济发展办公室招聘辅助性工作人员1人考试参考试题及答案解析
- 2025山东青岛大学附属医院外包人员招聘28人备考练习试题及答案解析
- 公路建设工程施工组织设计方案
- 2025吉林省吉林大学白求恩第一医院神经创伤外科招聘备考练习题库及答案解析
- 能源产品销售代理合同协议书范本模板
- 2025年哈尔滨市清滨小学校招聘临聘教师2人考试参考试题及答案解析
- 2025江苏苏州工业园区东延路实验学校后勤辅助人员招聘1人考试参考试题及答案解析
- 2025年勤务保障试题及答案
- 贴牌生产委托授权书
- 做一个卓越而幸福的教育者课件
- 人教版小学数学五年级上册完美版全册PPT教学课件
- 《无人机组装与调试》-教学教案
- 跨境电商物流与供应链管理PPT全套完整教学课件
- C语言试讲稿课件
- 收音机组装指导书
- 义务教育科学课程标准(2022年版)测试题及答案含课标解读
- 水运工程统一用表之一《浙江省港口工程统一用表》
- GB/T 13306-2011标牌
- GA 1800.6-2021电力系统治安反恐防范要求第6部分:核能发电企业
评论
0/150
提交评论