解析卷人教版8年级数学下册《平行四边形》同步测试试卷_第1页
解析卷人教版8年级数学下册《平行四边形》同步测试试卷_第2页
解析卷人教版8年级数学下册《平行四边形》同步测试试卷_第3页
解析卷人教版8年级数学下册《平行四边形》同步测试试卷_第4页
解析卷人教版8年级数学下册《平行四边形》同步测试试卷_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为()A.40° B.45° C.50° D.55°2、如图,矩形ABCD中,AC交BD于点O,且AB=24,BC=10,将AC绕点C顺时针旋转90°至CE.连接AE,且F、G分别为AE、EC的中点,则四边形OFGC的面积是()A.100 B.144 C.169 D.2253、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为()A.16 B.12 C.8 D.44、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A. B. C. D.5、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A.46.5cm B.22.5cm C.23.25cm D.以上都不对第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是__________.2、已知长方形ABCD中,AB=4,BC=10,M为BC中点,P为AD上的动点,则以B、M、P为顶点组成的等腰三角形的底边长是______________________.3、如图,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=___.在点D运动过程中,CE的最小值为___.4、已知如图,点E,F分别在正方形的边,上,,若,,则_________.5、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标.2、如图,在中,过点作于点,点在边上,,连接,.(1)求证:四边形是矩形;(2)若,,,求证:平分.3、如图,四边形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分别为E、F.求证:BE=BF.4、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点.

(1)求证:四边形是平行四边形;(2)当是多少度时,四边形为菱形?试说明理由.5、在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.

(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为________°.(2)如图2,若点F落在边BC上,且AB=CD=6,AD=BC=10,求CE的长.(3)如图3,若点E是CD的中点,AF的延长线交BC于点G,且AB=CD=6,AD=BC=10,求CG的长.-参考答案-一、单选题1、A【解析】【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.2、C【解析】【分析】先根据矩形的性质、三角形中位线定理可得,再根据平行四边形的判定可得四边形为平行四边形,然后根据旋转的性质可得,从而可得,最后根据正方形的判定可得四边形为正方形,由此即可得.【详解】解:四边形为矩形,,,分别为的中点,,,四边形为平行四边形,又绕点顺时针旋转,,,平行四边形为正方形,四边形的面积是,故选:C.【点睛】本题考查了矩形的性质、正方形的判定与性质、三角形中位线定理等知识点,熟练掌握正方形的判定与性质是解题关键.3、C【解析】【分析】由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=BO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.4、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【详解】解:矩形ABCD,设BE=x,∵AE为折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,则点E到点B的距离为:.故选:C.【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.5、C【解析】【分析】如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,∴,,,∴△DEF的周长,同理可得:△GHI的周长,∴第三次作中位线得到的三角形周长为,∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为,故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1、菱形【解析】【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【详解】解:图象如图所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件.2、5或或【解析】【分析】分三种情况:①当BP=PM时,点P在BM的垂直平分线上,取BM的中点N,过点N作NP⊥BM交AD于P,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解.【详解】解:BC=10,M为BC中点,∴BM=5,当△BMP为等腰三角形时,分三种情况:①当BP=PM时,点P在AM的垂直平分线上,取BM的中点N,过点N作NP⊥AD交AD于P,如图1所示:则△PBM是等腰三角形∴底边BM的长为5②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,综上,以B、M、P为顶点组成的等腰三角形的底边长是:5或或故答案为:5或或.【点睛】本题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.3、4【解析】【分析】以AC为边作正△AFC,并作FH⊥AC,垂足为点H,连接FD、CE,由直角三角形可求BC=4,,由“SAS”可证△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此时,故CE的最小值是.【详解】解:以AC为边作正△AFC,并作FH⊥AC,垂足为点H,连接FD、CE,如图:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等边三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴当FD⊥BD时,FD最小,此时∠FDC=∠DCH=∠CHF=90°,∴四边形FDCH是矩形,∴,∴CE的最小值是.故答案为:4,.【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握等边三角形的性质.4、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质即可得出答案.【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案为:14.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.5、10【解析】【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形,是等边三角形,故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.三、解答题1、(1)3秒后平行于轴;(2)或.【分析】(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;(2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.【详解】解:(1),,设秒后平行于轴,,垂直于轴,垂直于轴,平行于轴,四边形是矩形,,即,解得,即3秒后平行于轴;(2)由题意得:经过秒后,,垂直于轴,点在直线上,且点的坐标为,点的纵坐标为4,①当点在点右侧时,,由得:,解得,,此时点的坐标为;②当点在点左侧时,,由得:,解得,,此时点的坐标为;综上,点的坐标为或.【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.2、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,.即,,四边形是平行四边形.,,四边形是矩形;(2)四边形是平行四边形,,.四边形是矩形;在中,由勾股定理,得,,,,即平分.【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.3、见解析【分析】根据菱形的性质,可得AD=DC,AB=BC,∠A=∠C.从而得到△AED≌△CFD.从而得到AE=CF.即可求证.【详解】证明:∵四边形ABCD是菱形,∴AD=DC,AB=BC,∠A=∠C.∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∴△AED≌△CFD(AAS).∴AE=CF.∴AB﹣AE=BC﹣CF.即:BE=BF.【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键.4、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析【分析】(1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;(2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.【详解】证明:(1)∵,∴.又∵,∴.∴.同理可得:.∴,又∵,∴四边形BEFG是平行四边形;(2)当时,四边形EFGB为菱形.理由如下:∵四边形BEFG是菱形,∴,由(1)得:,∴,∴为等边三角形,∴,∴.【点睛】题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.5、(1)18;(2)CE的长为;(3)CG的长为.【分析】(1)根据矩形的性质得∠DAC=36°,根据折叠的性质得∠DAE=18°;(2)根据矩形性质得∠B=∠C=90°,BC=AD=10,CD=AB=6,根据折叠的性质得AF=AD=10,EF=ED,根据勾股定理得BF=8,则CF=2,设CE=x,则EF=ED=6﹣x,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论