解析卷华东师大版8年级下册期末试题附完整答案详解(夺冠系列)_第1页
解析卷华东师大版8年级下册期末试题附完整答案详解(夺冠系列)_第2页
解析卷华东师大版8年级下册期末试题附完整答案详解(夺冠系列)_第3页
解析卷华东师大版8年级下册期末试题附完整答案详解(夺冠系列)_第4页
解析卷华东师大版8年级下册期末试题附完整答案详解(夺冠系列)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华东师大版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有()个.①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.A.1 B.3 C.4 D.52、初三学生小博匀速骑车从家前往体有馆打羽毛球.已知小博家离体育馆路程为5000米,小博出发5分钟后,爸爸发现小博的电话手表落在家里,无法联系,于是爸爸匀速骑车去追赶小博,当爸爸追赶上小博把手表交给小博后,爸爸立即返回家,小博以原速继续向体有馆前行(假定爸爸给手表和掉头的时间忽略不计),在整个骑行过程中,小博和爸爸均保持各自的速度匀速骑行,小博、爸爸两人之向的距离y(米)与小博出发的时间x(分钟)之间的关系如图所示,对于以下说法错误的是().A.小博的迹度为180米/分B.爸爸的速度为270米/分C.点C的坐标是D.当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米3、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是()A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米C.小南到达景区时共用时7.5小时 D.家距离景区共400千米4、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为()A. B. C. D.5、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是()A. B.C. D.6、变量x与y之间的关系是,当时,自变量x的值是()A.13 B.5 C.2 D.37、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为()A.22.5° B.27.5° C.30° D.35°8、下列函数中,y是x的一次函数的是()A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,矩形的两条对角线相交于点,已知,,则矩形对角线的长为_______.2、如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,且顶点B的坐标是(1,2),如果以O为圆心,OB长为半径画弧交x轴的正半轴于点P,那么点P的坐标是_______.3、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.4、请写出一个过第二象限且与轴交于点的直线表达式___.5、原点的坐标为______,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-),任何一个在x轴上的点的纵坐标都为0,记作______;任何一个在y轴上的点的横坐标都为0,记作______.6、如图,在矩形中,,点在边上,联结.如果将沿直线翻折,点恰好落在线段上,那么的值为_________.7、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A是第______象限内的点,点B是第______象限内的点,点D是______上的点.三、解答题(7小题,每小题10分,共计70分)1、作图题:(1)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)(2)如图,在7×7的正方形网格中,网格线的交点称为格点,点A,B在格点上,每一个小正方形的边长为1.请以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).并计算你所画菱形的面积.2、己知△ABC和△ADE均为等边三角形,点F、D分别在AC、BC上,AF=CD,连接BF、EF.(1)如图1,求证:四边形为平行四边形;(2)如图2,延长交于点H,连接,请直接写出图2中所有长度等于的线段.(不包括本身)3、化简:(1)(2)4、2021年是中国共产党成立100周年.为了庆祝建党100周年,某工厂需制作一批纪念品,现有甲、乙两种机器同时开工制造.已知甲加工150个纪念品所用的时间与乙加工120个纪念品所用的时间相等,甲、乙两种机器每分钟共加工90个纪念品,求甲、乙两种机器每分钟各加工多少个纪念品?5、直线,与直线相交于点.(1)求直线的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内的整点恰好为2个,结合函数图象,求的取值范围.6、在△ABC中,CD⊥AB于点D.(1)如图1,当点D是线段AB中点时,延长AC至点E,使得CE=CB,连接EB.①按要求补全图1;②若AB=2,AC=,求EB的长.(2)如图2,当点D不是线段AB的中点时,作∠BCE(点E与点D在直线BC的异侧),使∠BCE=2∠CAB,CE=CB,连接AE,用等式表示线段AB,CD,AE的数量关系,并说明理由.7、下面是小东设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点.求作:四边形ABCD,使得四边形ABCD是矩形.作法:①作射线BO,以点O为圆心,OB长为半径画弧,交射线BO于点D;②连接AD,CD.四边形ABCD是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点O为AC的中点,∴AO=CO.又∵BO=,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴□ABCD是矩形()(填推理的依据).-参考答案-一、单选题1、C【解析】【分析】证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【详解】解:∵BH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS);∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,∴△NFE是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,∴∠ANB=∠CEA,在△ANB和△CEA中,,∴△ANB≌△CEA(SAS),故①正确;∵AN=CE,NF=EF,∴BF=AF=FC,又∵AF⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),故④正确;∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=BC=2AF=MC+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.2、C【解析】【分析】根据小博出发5分钟后行驶900米,得出小博的迹度为=180米/分,可判断A;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,根据两者行驶路程相等列方程15×180=10x,得出x=270米/分,可判断B;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,可判断C;设爸爸出发时间为t分钟时,两者之间距离为800米,根据追及与相背而行问题列方程(5+t)180-270t=800或(180+270)×(t-10)=800,解方程可判断D.【详解】解:∵小博出发5分钟后行驶900米,∴小博的迹度为=180米/分,故选项A正确;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,15×180=10x,解得:x=270米/分,∴故选项B正确;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,∴点C(25,4500),故选项C不正确,设爸爸出发时间为t分钟时,两者之间距离为800米,(5+t)180-270t=800或(180+270)×(t-10)=800,解得:分钟或分钟,当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米,故选项D正确.故选C.【点睛】本题考查从函数图像获取信息和处理,掌握从函数图像获取信息和处理,关键掌握图像中的横纵轴于折叠表示的意义.3、B【解析】【分析】先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.【详解】解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,故选项A正确;设小南t小时追上小开,50(2+1+0.5+t)=100t,解得t=3.5,∴100×3.5=350千米,故选项B不正确;50(2+1+0.5+t+0.5)=100t,解得t=4,∴小南到达景区时共用2+1+0.5+4=7.5小时,故选项C正确;∵100×4=400千米,∴家距离景区共400千米,故选项D正确.故选B.【点睛】本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.4、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.5、C【解析】【分析】根据矩形的判定定理判断即可.【详解】∵A满足的条件是有一个角是直角的平行四边形是矩形,∴A合格,不符合题意;∵B满足的条件是三个角是直角的四边形是矩形,∴B合格,不符合题意;∵C满足的条件是有一个角是直角的四边形,∴无法判定,C不合格,符合题意;∵D满足的条件是有一个角是直角的平行四边形是矩形,∴D合格,不符合题意;故选C.【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.6、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.7、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.8、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.二、填空题1、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.2、(,0)【解析】【分析】利用勾股定理求出OB的长度,同圆的半径相等即可求解.【详解】由题意可得:OP=OB,OC=AB=2,BC=OA=1,∵OB===,∴OP=,∴点P的坐标为(,0).故答案为:(,0).【点睛】本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.3、34(3,﹣4)【解析】【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.【详解】解:∵A(x,4)关于y轴的对称点是B(-3,y),∴x=3,y=4,∴A点坐标为(3,4),∴点A关于x轴的对称点的坐标是(3,-4).故答案为:3;4;(3,-4).【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.4、(答案不唯一)【解析】【分析】因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可【详解】解:直线过第二象限,且与轴交于点,,,直线表达式为:.故答案为:(答案不唯一).【点睛】本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.5、(0,0)(x,0)(0,y)【解析】略6、【解析】【分析】先根据翻折的性质得出AD′=AD=5,DP=PD′,,然后在Rt△ABF中由勾股定理求出BD′=4,D′C=1,设DP=x,则D′P=x,PC=3-x,在RtCD′P中,由勾股定理求出列方程求出x即可,然后利用三角形的面积公式求出S△ADP和的面积即可.【详解】解:∵AB=3,BC=5,∴DC=3,AD=5,又∵将△ADP折叠使点D恰好落在BC边上的点D′,∴AD′=AD=5,DP=PD′,在Rt△ABD′中,AB=3,AD′=5,∴BD′==4,∴D′C=5-4=1,设DP=x,则D′P=x,PC=3-x,在Rt△CD′P中,D′P2=D′C2+PC2,即x2=12+(3-x)2,解得x=,即DP的长为,∵AD=5,∴S△ADP=×DP×AD=××5=,=3×5-=,∴=,故答案为:.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,也考查了矩形的性质以及勾股定理.7、象限不属于一三y轴【解析】略三、解答题1、(1)见解析(2)画图见解析,图1菱形面积为6,图2菱形面积为8,图3菱形面积为10【解析】【分析】(1)作线段AB的垂直平分线得到线段AB的中点,则中点为P点;(2)先以AB为边画出一个等腰三角形,再作对称即可,根据菱形的面积等于对角线乘积的一半可求得.(1)解:如图,点P为所作.(2)如图所示:四边形ABCD即为所画菱形,(答案不唯一,画出一个即可).图1菱形面积S=×2×6=6,图2菱形面积S=4×4-×1×3×4-2=8,图3菱形面积S=4×4-×1×3×4=10.【点睛】本题考查了作图-基本作图及菱形的性质,(1)理解两平行线间的距离是解决问题的关键;(2)由对称性得到菱形是解题的关键.2、(1)见解析(2)与BD相等的线段有:BH、CF、EC、EF.【解析】【分析】(1)先证明△ADC≌△BFA,推出AD=BF=DE,∠DAC=∠FBA,再证明∠BDG=60°,推出BF∥DE,即可证明四边形BFED为平行四边形;(2)根据△ABC和△ADE均为等边三角形,四边形BFED为平行四边形,利用线段的和与差证明得到BH=CF=EF=BD;证明四边形BHEC为平行四边形,推出EC=BH,即可得到所有长度等于BD的线段.(1)证明:∵△ABC和△ADE均为等边三角形,∴∠C=∠BAC=∠ADE=60°,AB=AC,AD=DE,又∵AF=CD,∴△ADC≌△BFA,∴AD=BF=DE,∠DAC=∠FBA,设AD、BF相交于点G,∴∠BGD=∠BAG+∠GBA=∠BAG+∠DAC=∠BAC=60°,∴∠BGD=∠ADE=60°,∴BF∥DE,又∵BF=DE,∴四边形BFED为平行四边形;,(2)解:∵△ABC和△ADE均为等边三角形,且AF=CD,∴BC-CD=AC-AF,即BD=CF;由(1)知四边形BFED为平行四边形,∴EF∥BD,BD=EF;∴∠AFH=∠C=60°,∵∠BAC=60°,∴△AFH为等边三角形,∴AF=AH=HF,∴AB-AH=AC-AF,即BH=CF=BD;∴EF+HF=BH+AH,即EH=AB=BC,∵EF∥BD,即EH∥BC,∴四边形BHEC为平行四边形,∴EC=BH=BD;综上,与BD相等的线段有:BH、CF、EC、EF.,【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.3、(1)0(2)3【解析】【分析】(1)根据整式的混合运算顺序和法则计算可得;(2)根据分式的乘法法则计算,得到答案.(1)解:;(2)解:.【点睛】本题考查了整式的混合运算,分式的乘除法,解题的关键是熟练掌握运算顺序和运算法则.4、甲机器每分钟加工纪念品50个,乙机器每分钟加工纪念品40个【解析】【分析】设甲机器每分钟加工纪念品x个,根据等量关系:甲加工150个纪念品所用的时间=乙加工120个纪念品所用的时间,列出分式方程并解之即可.【详解】设甲机器每分钟加工纪念品x个,根据题意得解得经检验是原方程的解且符合题意则故甲机器每分钟加工纪念品50个,乙机器每分钟加工纪念品40个【点睛】本题考查了分式方程的实际应用,正确理解题意、找到等量关系并列出方程是解题的关键.注意解分式方程一定要检验.5、(1)直线为;(2)①当时,整点个数为1个,为;②的取值范围为或【解析】【分析】(1)根据待定系数法求得即可;(2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.(1)解:直线过点.,直线为.(2)解:①当时,,把代入得,解得:,,如图1,区域内的整点个数为1个,为.②如图2,若,当直线过,时,.当直线过,时,.,如图3,若,当直线过,时,.当直线过,时,..综上,若区域内的整点恰好为2个,的取值范围为或.【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.6、(1)①见解析;②;(2)4CD2+AB2=AE2,见解析【解析】【分析】(1)①按要求画图即可;②根据线段垂直平分线,得出AC=CB,根据CE=CB,得出CD是△AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论