




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、如图,在平面直角坐标系中、四边形OABC为菱形,O为原点,A点坐标为(8,0),∠AOC=60°,则对角线交点E的坐标为(
)A.(4,2) B.(2,4) C.(2,6) D.(6,2)2、如图,在中,,,将绕点C顺时针旋转得到,点在上,交于F,则图中与相似的三角形有(不再添加其他线段)(
)A.1个 B.2个 C.3个 D.4个3、已知(a≠0,b≠0),下列变形正确的是()A. B. C.2a=3b D.3a=2b4、如图,四边形OABC是平行四边形,点A的坐标为A(3,0),∠COA=60°,D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,直线CD与y轴相交于点E,则点E的坐标为(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)5、图,在△ABC中,AB=AC,四边形ADEF为菱形,O为AE,DF的交点,S△ABC=8,则S菱形ADEF=()A.4 B.4 C.4 D.46、生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下与全身的高度比值接近0.618,可以增加视觉美感,若图中为2米,则约为(
)A.1.24米 B.1.38米 C.1.42米 D.1.62米二、多选题(6小题,每小题2分,共计12分)1、如图,在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,CE=2AE,则下列结论中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE2、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论,其中正确的结论是()A.AC=FG B.S△FAB:S四边形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ•AC3、如图,将绕正方形ABCD的顶点A顺时针旋转90°得,连结EF交AB于H,则下列结论正确的是(
)A.AE⊥AF B.EF∶AF=∶1C.AF2=FH·FE D.FB∶FC=HB∶EC4、如图,在边长为4的正方形ABCD中,点E,F分别是边BC,AB的中点,连接AE,DF交于点N,将△ABE沿AE翻折,得到△AGE,AG交DF于点M,延长EG交AD的延长线于点H,连接CG,ME,取ME的中点为点O,连接NO,GO.则以下结论正确的有(
)A. B.C.△GEC为等边三角形 D.5、如图,在△ABC中,点P为AB上一点,给出下列四个条件中能满足△APC和△ACB相似的条件是(
)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB6、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.2、在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是_____.3、如图,△ABC与△是位似图形,点是位似中心,若,,则=________.4、袋中有五颗球,除颜色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为__.5、制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是_____元.6、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_____.7、中国“一带一路”倡议给沿线国家带来很大的经济效益.若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为______________.8、如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为__.四、解答题(6小题,每小题10分,共计60分)1、(1)计算:(2)解方程:2(x﹣3)2=502、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.3、如图,矩形ABCD中,AB=2cm,BC=3cm,点E从点B沿BC以2cm/s的速度向点C移动,同时点F从点C沿CD以1cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动.当△AEF是以AF为底边的等腰三角形时,求点E运动的时间.4、如图所示,直线y=x+2与坐标轴交于A、B两点,与反比例函数y=(x>0)交于点C,已知AC=2AB.(1)求反比例函数解析式;(2)若在点C的右侧有一平行于y轴的直线,分别交一次函数图象与反比例函数图象于D、E两点,若CD=CE,求点D坐标.5、某公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年均增长率为多少?6、已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.-参考答案-一、单选题1、D【解析】【分析】过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.【详解】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴∠AOE=∠AOC=30°,OB⊥AC,∠FAE=60°,∴∠AEF=30°∵A(8,0),∴AO=8,∴AE=AO=×8=4,∴AF=AE=2,,∴OF=AO−AF=8−2=6,∴.故选:D【考点】本题考查了菱形的性质、勾股定理及含30°直角三角形的性质,正确作出辅助线是解题的关键.2、D【解析】【分析】根据旋转的性质及相似三角形的判定方法进行分析,找出存在的相似三角形即可.【详解】根据题意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4个故选D.【考点】考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.3、C【解析】【分析】根据比例的性质“两内项之积等于两外项之积”对各选项分析判断即可得.【详解】解:A、∵,∴,∴,选项说法错误,不符合题意;B、∵,∴,∴,选项说法错误,不符合题意;C、∵,∴,选项说法正确,符合题意;D、∵,∴,选项说法错误,不符合题意;故选C.【考点】本题考查了比例的性质,解题的关键是熟记比例的性质.4、B【解析】【分析】作CE⊥x轴于点E,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,x),表示出D的坐标,将C、D两点坐标代入反比例函数的解析式,解关于x的方程求出x即可得到点C、D的坐标,进而求得直线CD的解析式,最后计算该直线与y轴交点坐标即可得出结果.【详解】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x,),把C、D的坐标代入y=得:k=x•x=(3+x)•,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),设直线CD解析式为:y=ax+b,则,解得,∴直线CD解析式为:,∴当x=0时,,∴点E的坐标为(0,).故选:B.【考点】本题主要考查了平行四边形的性质、运用待定系数法求函数的解析式以及含度角的直角三角形的性质.根据反比例函数图象经过C、D两点,得出关于x的方程是解决问题的关键.5、C【解析】【分析】根据菱形的性质,结合AB=AC,得出DF为△ABC的中位线,DF∥BC,,从而得出AE为△ABC的高,得出,再根据菱形的面积公式,即可得出菱形的面积.【详解】解:∵四边形ADEF为菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正确.故选:C.【考点】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF为△ABC的中位线,是解题的关键.6、A【解析】【分析】根据a:b≈0.618,且b=2即可求解.【详解】解:由题意可知,a:b≈0.618,代入b=2,∴a≈2×0.618=1.236≈1.24.故答案为:A【考点】本题考查了黄金分割比的定义,根据题中所给信息即可求解,本题属于基础题.二、多选题1、ABD【解析】【分析】由已知条件易证DE∥BC,则△ABC∽△ADE,再由相似三角形的性质即可得到问题的选项.【详解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正确;∴△ABC∽△ADE,故A正确;∴DE:BC=AD:AB=1:3,故C错误;∴S△ABC=9S△ADE故D正确,∴其中成立的jABD,故选ABD.【考点】本题考查了平行四边形的性质以及相似三角形的判定和性质,证明DE∥BC是解题的关键.2、ABCD【解析】【分析】根据正方形的性质及垂直的定义证明△CAD≌△GFA,即可判断A选项;证明四边形CBFG是矩形,由此判断B选项;根据矩形的性质及等腰直角三角形的性质即可判断C选项;证明△CAD∽△EFQ,即可判断D选项.【详解】解:∵四边形ADEF为正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A选项正确;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四边形CBFG是平行四边形,∵,∴四边形CBFG是矩形,∴S△FAB:S四边形CBFG=1:2,故B选项正确;∵四边形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C选项正确;∵四边形ADEF为正方形,∴,AD=EF,∴,∵四边形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ•AC,故D选项正确;故选:ABCD.【考点】此题考查矩形的判定及性质,等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,熟记各知识点并熟练应用解决问题是解题的关键.3、ABD【解析】【分析】由旋转得到,进而可得,根据等腰直角三角形的性质以及勾股定理可得EF∶AF=∶1,根据相似三角对应边的比等于相似比可得FB∶FC=HB∶EC,而根据题意无法证明AF2=FH·FE,由此即可求得答案.【详解】解:∵四边形ABCD是正方形,∴,,∵旋转,∴,,,∴,即.,故A正确;是等腰直角三角形,,,(舍负),∴,故B正确;,,,故D正确.与不相似,∴无法证得,即无法证得,故C不正确.故选:ABD.【考点】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等相关知识,熟练掌握相似三角形的判定与性质是解决本题的关键.4、ABD【解析】【分析】由正方形的性质可得,则易证,然后可判定A选项,由折叠的性质及平行线的性质可得B选项,由题意易得,进而根据三角形中线及等积法可判定D选项.【详解】解:∵四边形ABCD是正方形,∴,AD∥BC,∴,∵点E,F分别是边BC,AB的中点,∴,∴(SAS),∴,∵,∴,∴,由折叠性质可得,∴,∴,假设△GEC为等边三角形成立,则有,∴,∴,∴,∴与AB=2BE相矛盾,故假设不成立;由折叠的性质可知,∴,∴,∵ME的中点为点O,∴,∴;综上所述:正确的有ABD;故选ABD.【考点】本题主要考查全等三角形的性质与判定、正方形的性质、折叠性质及等积法,熟练掌握全等三角形的性质与判定、正方形的性质、折叠性质及等积法是解题的关键.5、ABC【解析】【分析】根据相似三角形的判定定理逐项判断即可.【详解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故选项A符合题意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故选项B符合题意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故选项C符合题意;D、AB·CP=AP·CB不是两个对应边成比例,不能证明△APC和△ACB相似,故选项D不符合条件,故选:ABC.【考点】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解答的关键.6、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.三、填空题1、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.2、5【解析】【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为6,进行尝试,可确定、、为边的这样一组三角形满足条件.【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.【考点】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.3、16【解析】【分析】题干已知△ABC与△是位似图形,利用面积相似比进行分析求解.【详解】解:△ABC与△是位似图形,得到,利用相似图形,面积比即是对应线段比的平方比得到,由,得到=16.【考点】本题考查位似图形,利用相似图形的面积比即是对应线段比的平方比,从而分析求解.4、##0.5【解析】【分析】画树状图,共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,再由概率公式求解即可.【详解】画树状图如图:共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,两颗球的标号之和不小于4的概率为,故答案为:.【考点】本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键.5、1080【解析】【分析】直接利用相似多边形的性质进而得出答案.【详解】∵将此广告牌的四边都扩大为原来的3倍,∴面积扩大为原来的9倍,∴扩大后长方形广告牌的成本为:120×9=1080(元).故答案为:1080.【考点】此题考查相似多边形的性质,相似多边形的面积的比等于相似比的平方.6、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解.【详解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案为:1.【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用.7、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴该地区人均收入增长率为20%.故本题答案应为:20%.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.8、【解析】【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.【详解】解:如下图,∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四边形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案为:.【考点】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,解题的关键是掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义.四、解答题1、(1)﹣;(2)x=8或﹣2.【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案.【详解】(1)原式=2﹣3﹣(﹣1)=﹣1﹣+1=﹣;(2)2(x﹣3)2=50(x﹣3)2=25,则x﹣3=±5,解得:x=8或﹣2.【考点】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.2、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值.【详解】(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程.3、(6-)s【解析】【分析】设点E运动的时间是x秒.根据题意可得方程,解方程即可得到结论.【详解】解:设点E运动的时间是xs.根据题意可得22+(2x)2=(3-2x)2+x2,解这个方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴两点运动了1.5s后停止运动.∴x=6-.答:当△AEF是以AF为底边的等腰三角形时,点E运动的时间是(6-)s.【考点】本题考查了一元二次方程的应用,考查了矩形的性质,等腰三角形的判定及性质,勾股定理的运用.4、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y轴于M,如图,利用直线解析式确定A(0,2),B(﹣2,0),再根据平行线分线段成比例定理求出MC=4,AM=4,则C(4,6),然后把C点坐标代入y=中求出k得到反比例函数解析式;(2)MC交直线DE于N,如图,证明△CND为等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 济南市2024-2025学年九年级上学期语文期中测试试卷
- 高速交警安全知识培训课件
- 10kV及以下配网农网工程施工组织设计
- 电脑知识培训开场白课件
- 高考文理科课件
- 电力设施迁改合同(实物补偿)
- 电脑基本知识操作培训课件
- 第6课《国行公祭为佑世界和平》课件+2025-2026学年统编版语文八年级上册
- r语言编程考试及答案
- plc的考试试题及答案
- 小儿哮喘病护理
- 中华护理学会老年人误吸的预防团体标准解读
- 《捷众电梯推介书》课件
- 日光性皮炎的临床特征
- 中建型钢混凝土结构施工方案
- 《头发头皮生理学》课件
- 糖尿病处方点评
- 数据中心暖通培训
- 九上道法【思维导图+重点句+考点问题+典型例题】
- 有限空间专项安全检查表
- 广西桂林旅游文化宣传城市介绍文旅科普美食
评论
0/150
提交评论