解析卷云南昆明实验中学7年级数学下册变量之间的关系专项练习试题(含解析)_第1页
解析卷云南昆明实验中学7年级数学下册变量之间的关系专项练习试题(含解析)_第2页
解析卷云南昆明实验中学7年级数学下册变量之间的关系专项练习试题(含解析)_第3页
解析卷云南昆明实验中学7年级数学下册变量之间的关系专项练习试题(含解析)_第4页
解析卷云南昆明实验中学7年级数学下册变量之间的关系专项练习试题(含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南昆明实验中学7年级数学下册变量之间的关系专项练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x小时后,产生电费y(元)与时间(小时)之间的函数关系式是()A. B. C. D.2、圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量 B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量 D.C是自变量,R为因变量,2π为常量3、李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)4、圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量 B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量 D.C为变量,2、π、R为常量5、小李骑车沿直线旅行,先前进了1000米,休息了一段时间,又原路返回800米,再前进1200米,则他离起点的距离与时间的关系示意图是()A. B. C. D.6、下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对7、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.8、在球的体积公式中,下列说法正确的是()A.V、、R是变量,为常量 B.V、是变量,R为常量C.V、R是变量,、为常量 D.以上都不对9、下列图像中,不是的函数的是()A. B. C. D.10、为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查。队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地。设行进时间为t(单位:min),行进的路程为s(单位:m),则能近似刻画s与t之间的函数关系的大致图象是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.2、某城市大剧院地面的一部分为扇形观众席的座位按表所示的方式设置:排数1234……座位数50535659……则第六排有________个座位;第n排有________个座位3、直角三角形两锐角的度数分别为,,其关系式为,其中变量为________,常量为________.4、已知某地的地面气温是20℃,如果每升高1km气温下降6℃,则该地气温t(℃)与高度h(km)的函数关系式为___.5、摄氏温度与华氏温度之间的对应关系为,则其中变量是________,常量是________.6、如图,是汽车加油站在加油过程中加油器仪表某一瞬间的显示,(其中数量用x升表示,金额用y元表示,单价用a元/升表示),结合图片信息,请用适当的方式表示加油过程中变量之间的关系为:___________.7、地面温度为15ºC,如果高度每升高1千米,气温下降6ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________8、汽车开始行驶时,油箱中有油30升,如果每小时耗油5升,那么油箱中的剩余油量(升)和工作时间(时)之间的函数关系式是____,自变量的取值范围____.9、用每片长6cm的纸条,重叠1cm粘贴成一条纸带,如图.纸带的长度y(cm)与纸片的张数x之间的函数关系式是___________________10、一个三角形的底边长是3,高x可以任意伸缩,面积为y,y随x的变化变化,则其中的常量为________,y随x变化的解析式为______________.三、解答题(6小题,每小题10分,共计60分)1、已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.2、为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…油箱剩余油量Q(L)100948882…①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.3、在建设社会主义新农村过程中,某村委决定投资开发项目,现有6个项目可供选择,各项目所需资金及预计年利润如下表:所需资金(亿元)124678预计利润(千万元)0.20.350.550.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果预计要获得0.9千万元的利润,你可以怎样投资项目?(3)如果该村可以拿出10亿元进行多个项目的投资,预计最大年利润是多少?说明理由.4、某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式5、已知信件质量(g)和邮费(元)之间的关系如下表:信件质量(g)邮费y(元)0.801.201.60你能将其中一个变量看成另一个变量的函数吗?6、日常生活中,我们经常要烧开水,下表是对烧水的时间与水的温度的描述:时间(分)12345678910111213温度(℃)25293243526172819098100100100(1)上表反映了哪些变量之间的关系?(2)根据表格的数据判断:在第15分钟时,水的温度为多少?(3)随着加热时间的增加,水的温度是否会一直上升?-参考答案-一、单选题1、A【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得:,故选A.【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.2、B【解析】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选B.点评:本题主要考查了常量,变量的定义,是需要识记的内容.3、B【详解】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.4、B【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.5、C【分析】根据休息时,离开起点的S不变,返回时S变小,再前进时S逐渐变大得出函数图象,然后选择即可.【详解】解:前进了1000米图象为一条线段,休息了一段时间,离开起点的不变,又原路返回800米,离开起点的变小,再前进1200米,离开起点的逐渐变大,纵观各选项图象,只有选项符合.故选:.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6、C【详解】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.7、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.8、C【分析】根据常量与变量的定义解答即可.【详解】解:在球的体积公式中,V、R是变量,、为常量,故选C.【点睛】本题考查了常量与变量,在某一问题中,保持不变的量叫做常量,可以取不同数值的量叫做变量.9、C【分析】函数的定义:在某变化过程中,有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照对应法则,y都有唯一确定的值和它对应,则x叫自变量,y是x的函数.根据定义再结合图象观察就可以得出结论.【详解】根据函数定义,如果在某变化过程中,有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照对应法则,y都有唯一确定的值和它对应.而C中的y的值不具有唯一性,所以不是函数图象.【点睛】本题考查了函数的定义,根据函数定义判断所给出的图像是否是函数.10、A【分析】根据行进的路程和时间之间的关系,确定图象即可得到答案.【详解】解:根据题意得,队员的行进路程s(单位:m)与行进时间t(单位:min)之间函数关系的大致图象是故选:A【点睛】本题考查函数图象,正确理解函数自变量与因变量的关系及其实际意义是解题的关键.二、填空题1、227646【分析】根据横纵坐标的意义,分别分析得出即可.【详解】由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地,从A地到B地快车比慢车共少用了18-(14-2)=6小时.故答案为2,276,4,6.【点睛】此题主要考查了函数图象,从图象上获取正确的信息是解题关键.2、65【分析】从具体数据中,不难发现:后一排总比前一排多3,由此求得第六排的座位,根据此规律,第n排有50+3(n-1)个,再化简即可.【详解】解:第6排有62+3=65个座位,第n排有50+3(n-1)=3n+47个座位.故答案为:65,3n+47.【点睛】本题考查列代数式,找出座位数排列规律是解决问题的关键.3、x,y-1,90【分析】根据在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,即可解答.【详解】关系式中,变量为:x,y,常量为:-1,90,故答案为:x,y;-1,90.【点睛】本题考查常量与变量的认识,熟记基本定义是解题关键.4、【分析】根据题意得到每升高1km气温下降6℃,由此写出关系式即可.【详解】∵每升高1km气温下降6℃,∴气温t(℃)与高度h(km)的函数关系式为t=﹣6h+20,故答案为.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.5、C,F【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】,则其中的变量是C,F,常量是,故答案为C,F;;【点睛】此题考查常量与变量,解题关键在于掌握其定义6、y=6.80x【分析】首先根据题意可知加油过程中的变量为数量和金额,然后根据金额=数量×单价表示即可.【详解】∵加油过程中的变量为数量和金额,金额=数量×单价,,故答案为:.【点睛】本题主要考查函数关系,找到题中的变量是关键.7、h=.【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.8、y=30-5x0≤x≤6【分析】油箱内剩余油量=原有的油量-x小时消耗的油量,可列出函数关系式;根据每小时耗油量可求出可行驶的时间,即可得出自变量的取值范围.【详解】∵油箱中有油30升,每小时耗油5升,工作时间为x,∴油箱内剩余油量y=30-5x,30÷5=6,∴可行驶6小时,∴自变量的取值范围为0≤x≤6,故答案为:y=30-5x,0≤x≤6【点睛】本题主要考查了由实际问题抽象出一次函数,本题关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.9、y=5x+1.【分析】根据粘合后的总长度=x张纸条的长-(x-1)个粘合部分的长,列出函数解析式即可.【详解】纸带的长度y(cm)与纸片的张数x之间的函数关系式是y=6x−(x−1)=5x+1,故答案为y=5x+1.【点睛】此题考查函数关系式,解题关键在于根据题意列出方程.10、3【分析】先根据变量与常量的定义,得到3为常量,x和y为变量,再根据三角形面积公式得到y=×3×x=x(x>0),【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y随x变化的解析式为.故答案为:3;.【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量.三、解答题1、y=﹣x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=AC•BD=AB•BC,∴BD=;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=AP•BD=×(10﹣x)×=﹣x+24,∴y与x之间的关系式为:y=﹣x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.2、①Q=100﹣6t;②10L;③km.【分析】①由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;②求汽车行驶5h后,油箱中的剩余油量即是求当t=5时,Q的值;③贮满50L汽油的汽车,理论上最多能行驶几小时即是求当Q=0时,t的值.【详解】解:①Q与t的关系式为:Q=100﹣6t;②当t=5时,Q=100﹣6×5=70,答:汽车行驶5h后,油箱中的剩余油量是70L;③当Q=0时,0=50﹣6t,6t=50,解得:t=,100×=km.答:该车最多能行驶km.3、(1)所需资金和利润之间的关系,所需资金为自变量,年利润为因变量;(2)可以投资一个7亿元的项目;也可以投资一个2亿元,再投资一个4亿元的项目;还可以投资一个1亿元,再投资一个6亿元的项目;(3)最大利润是1.45亿元,理由详见解析.【分析】(1)分别根据变量、因变量的定义分别得出即可;(2)根据图表分析得出投资方案;(3)分别求出不同方案的利润进而得出答案.【详解】解:(1)所需资金和利润之间的关系.所需资金为自变量.年利润为因变量;(2)可以投资一个7亿元的项目.也可以投资一个2亿元,再投资一个4亿元的项目.还可以投资一个1亿元,再投资一个6亿元的项目.答:可以投资一个7亿元的项目;也可以投资一个2亿元,再投资一个4亿元的项目;还可以投资一个1亿元,再投资一个6亿元的项目.(3)共三种方案:①1亿元,2亿元,7亿元,利润是亿元.②2亿元,8亿元,利润是亿元.③4亿元,6亿元,利润是亿元.∴最大利润是亿元.答:最大利润是亿元.【点睛】此题主要考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键.4、(1)40;(2).【分析】(1)根据拼成图案的地砖块数规律,即可得到答案;(2)根据,,,,……,进而得到与之间的函数表达式.【详解】(1)∵第一次拼成的图案,共用地砖4块;第2次拼成的图案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论