解析卷人教版8年级数学上册《全等三角形》专项训练练习题(详解)_第1页
解析卷人教版8年级数学上册《全等三角形》专项训练练习题(详解)_第2页
解析卷人教版8年级数学上册《全等三角形》专项训练练习题(详解)_第3页
解析卷人教版8年级数学上册《全等三角形》专项训练练习题(详解)_第4页
解析卷人教版8年级数学上册《全等三角形》专项训练练习题(详解)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》专项训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有(

)A.①②③ B.①②④ C.①③④ D.①②③④2、如图给出了四组三角形,其中全等的三角形有(

)组.A.1 B.2 C.3 D.43、如图,已知,,,是上的两个点,,,若,,,则的长为(

)A. B. C. D.4、下列说法正确的是(

)A.两个长方形是全等图形 B.形状相同的两个三角形全等C.两个全等图形面积一定相等 D.所有的等边三角形都是全等三角形5、如图,在中,,,垂足分别为D,E,,交于点H,已知,,则的长是(

)A.1 B. C.2 D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论成立,则这个条件是_____.2、如图,已知,,添加一个条件,使,你添加的条件是______(填一个即可).3、如图,在和中,,,,,以点为顶点作,两边分别交,于点,,连接,则的周长为______.4、如图,在中,,以点为圆心,任意长为半径作弧,分别交于和,再分别以点为圆心,大于二分之一为半径作弧,两弧交于点,连接并延长交于点,过点作于.若,则的面积为________.5、如图,平分,.填空:因为平分,所以________.从而________.因此________.三、解答题(5小题,每小题10分,共计50分)1、如图,点B、C、D在同一直线上,△ABC、△ADE是等边三角形,CE=5,CD=2(1)证明:△ABD≌△ACE;(2)求∠ECD的度数;(3)求AC的长.2、如图,在中,,点在的延长线上,于点,若,求证:.3、(1)如图,在中,按以下步骤作图(保留作图痕迹):①以点为圆心,任意长为半径作弧,分别交、于点D、E.②分别以点D、E为圆心,大于的长为半径作弧,两弧交于点.③作射线交于点.则是的______线.(2)如果,,的面积为18.则的面积为______.4、在中,,,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接.(1)当点,都在线段上时,如图①,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图②;当点在线段的延长线上,点在线段的延长线上时,如图③,直接写出线段,,之间的数量关系,不需要证明.5、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。-参考答案-一、单选题1、D【解析】【分析】证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.2、D【解析】【详解】分析:根据全等三角形的判定解答即可.详解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS证明全等,图D可以利用ASA证明全等..其中全等的三角形有4组,故选D.点睛:此题考查全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较典型,难度适中.3、B【解析】【分析】由题意可证可得可求EF的长.【详解】解:在和中,故选:B.【考点】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.4、C【解析】【分析】性质、大小完全相同的两个图形是全等形,根据定义解答.【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C.【考点】此题考查全等图形的概念及性质,熟记概念是解题的关键.5、A【解析】【分析】利用“八字形”图形推出∠EAH=∠ECB,根据,EH=3,求出AE=4,证明△AEH≌△CEB,得到AE=CE=4,即可求出CH.【详解】解:∵,,∴∠CEB=,∵∠AHE=∠CHD,∴∠EAH=∠ECB∵,EH=3,∴AE=4,∵∠AEH=∠CEB,∠EAH=∠ECB,EH=BE,∴△AEH≌△CEB,∴AE=CE=4,∴CH=CE-EH=4-3=1,故选A.【考点】此题考查了全等三角形的判定及性质,“八字形”图形的应用,熟记全等三角形的判定定理是解题的关键.二、填空题1、DE=BC【解析】【分析】根据题目中的条件可以得到,再增加条件则不一定成立,从而可以解答本题.【详解】增加的条件为理由:∵∴∴∵∴不一定成立故答案为:.【考点】本题考查了三角形全等的判定定理,熟记并灵活运用各种判定方法是解题关键.2、(答案不唯一)【解析】【分析】此题是一道开放型的题目,答案不唯一,先根据∠BCE=∠ACD求出∠BCA=∠DCE,再根据全等三角形的判定定理SAS推出即可.【详解】解:添加的条件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案为:CB=CE(答案不唯一).【考点】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.3、4【解析】【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键.4、5【解析】【分析】作GM⊥AB于M,先利用基本作图得到AG平分∠BAC,再根据角平分线的性质得到GM=GH=2,然后根据三角形面积公式计算.【详解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案为:5.【考点】此题考查了角平分线的性质定理:角平分线上的点到这个角的两边的距离相等,还考查了角平分线的作图方法,正确理解题意得到AG平分∠BAC是解题的关键.5、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由内错角相等可以得出两直线平行.【详解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(内错角相等,两直线平行).故答案为:∠CAB,∠CAB,DC.【考点】本题考查了平行线的判定定理以及角平分线的定义,解题的关键是找出∠CAB=∠2.解决该类题型只需牢牢掌握平行线的判定定理即可.三、解答题1、(1)见解析(2)60°(3)3【解析】【分析】(1)根据等边三角形的性质利用SAS证明;(2)利用全等三角形的性质得到∠B=∠ACE=60°,计算即可得到答案;(3)利用全等的性质得到BD的长,再由等边三角形的性质,即可得到AC的长.(1)证明:∵△ABC和△ADE是等边三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考点】此题考查了全等三角形的判定及性质,熟记全等三角形的几种判定定理:SSS,SAS,ASA,AAS,HL,并熟练应用是解题的关键.2、证明见解析【解析】【分析】利用AAS证明,根据全等三角形的性质即可得到结论.【详解】证明:∵,∴∠ADE=90°,∵,∴∠ACB=∠ADE,在和中,∴,∴AE=AB,AC=AD,∴AE-AC=AB-AD,即EC=BD.【考点】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识.3、(1)角平分;(2)27【解析】【分析】(1)根据尺规作图要求,按给定的步骤与作法画图即可;(2)根据角分线性质可知,两三角形的AB与BC边上的高相等,则得面积比为底的比,依此列式求解即可.【详解】解:(1)如图所示,BG即为所求;故答案为:角平分;(2)如图,作GM⊥AB于M,作GN⊥BC于N,∵由(1)得BG为∠ABC的角平分线,∴GM=GN,∴,解得:.故答案为:27.【考点】本题考查尺规作图,角平分线性质,三角形面积;掌握尺规作图步骤与要求,根据角平分线性质得出两三角形的高相等,则面积比等于底的比是解题关键.4、(1)见解析;(2)图②:;图③:【解析】【分析】(1)过点作交的延长线于点.证明,根据全等三角形的性质可得,.再证,由此即可证得结论;(2)图②:,类比(1)中的方法证明即可;图③:,类比(1)中的方法证明即可.【详解】(1)证明:如图,过点作交的延长线于点.0∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.(2)图②:.证明:过点作交于点.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴,∵∴.∴.∵,,∴.在和中,∴.∴.∵,∴.图③:.证明:如图,过点作交的延长线于点.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.【考点】本题是全等三角形的综合题,正确作出辅助线,构造全等三角形是解决问题的关键.5、(1)见解析;(2)∠CMQ=60°,不变;(3)当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°,不变.【解析】【分析】(1)利用SAS可证全等;(2)先证△ABQ≌△CAP,得出∠BAQ=∠ACP,通过角度转化,可得出∠CMQ=60°;(3)存在2种情况,一种是∠PQB=9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论