解析卷-人教版8年级数学下册《平行四边形》综合测试练习题(详解)_第1页
解析卷-人教版8年级数学下册《平行四边形》综合测试练习题(详解)_第2页
解析卷-人教版8年级数学下册《平行四边形》综合测试练习题(详解)_第3页
解析卷-人教版8年级数学下册《平行四边形》综合测试练习题(详解)_第4页
解析卷-人教版8年级数学下册《平行四边形》综合测试练习题(详解)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》综合测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图所示,AB=CD,AD=BC,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对2、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A. B. C. D.3、已知菱形的边长为6,一个内角为60°,则菱形较长的对角线长是()A. B. C.3 D.64、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A.2.5km B.4.5km C.5km D.3km5、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为()A.40° B.45° C.50° D.55°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.2、如图,在▱ABCD中,BC=3,CD=4,点E是CD边上的中点,将△BCE沿BE翻折得△BGE,连接AE,A、G、E在同一直线上,则AG=______,点G到AB的距离为______.3、如图,四边形AOBC是正方形,曲线CP1P2P3⋅⋅⋅叫做“正方形的渐开线”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圆心依次按点A,O,B,C循环,点A的坐标为(2,0),按此规律进行下去,则点P2021的坐标为_____.4、如图,△ABC中,AC=BC=3,AB=2,将它沿AB翻折得到△ABD,点P、E、F分别为线段AB、AD、DB上的动点,则PE+PF的最小值是_____.5、如图,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=___.在点D运动过程中,CE的最小值为___.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,,求线段EF的长.2、如图,在矩形中,,,且四边形是一个正方形,试问点F是的黄金分割点吗?请说明理由.(补全解题过程)3、如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.

(1)在方格纸中画出以AB为对角线的正方形AEBF,点E、F在小正方形的顶点上;(2)在方格纸中画出以CD为斜边的等腰直角三角形CDM,连接BM,并直接写出BM的长.4、已知:在中,点、点、点分别是、、的中点,连接、.(1)如图1,若,求证:四边形为菱形;(2)如图2,过作交延长线于点,连接,,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.

5、(1)如图1中,∠A=90°,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数.(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为.-参考答案-一、单选题1、D【解析】【分析】根据平行四边形的判定与性质,求解即可.【详解】解:∵AB=CD,AD=BC∴四边形为平行四边形∴,,,∴、又∵,∴、∴图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质.2、A【解析】【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值.连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值为.故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.3、B【解析】【分析】根据一个内角为60°可以判断较短的对角线与两邻边构成等边三角形,求出较长的对角线的一半,再乘以2即可得解.【详解】解:如图,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等边三角形,菱形的边长为6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形较长的对角线长BD是:2×3=6.故选:B.【点睛】本题考查了菱形的性质和勾股定理,等边三角形的判定,解题关键是熟练运用菱形的性质和等边三角形的判定求出对角线长.4、D【解析】【详解】根据直角三角形斜边上的中线性质得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,∴CM=AB,∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.5、A【解析】【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.二、填空题1、【解析】【分析】由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中B与D关于AC对称,∴PB=PD,∴PD+PE=PB+PE=BE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,∴BE=3,∴PD+PE最小值是3,故答案为:3.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.2、2##【解析】【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案为2,.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.3、(4044,0)【解析】【分析】由题意可知:正方形的边长为2,分别求得,可发现点的位置是四个一循环,每旋转一次半径增加2,找到规律,即求得点P2021在x轴正半轴,进而求得OP的长度,即可求得点的坐标.【详解】由题意可知:正方形的边长为2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可发现点的位置是四个一循环,每旋转一次半径增加2,2021÷4=505…1,故点P2021在x轴正半轴,OP的长度为2021×2+2=4044,即:P2021的坐标是(4044,0),故答案为:(4044,0).【点睛】本题考查了平面直角坐标系点的坐标规律,正方形的性质,找到点的位置是四个一循环,每旋转一次半径增加2的规律是解题的关键.4、##【解析】【分析】首先证明四边四边形ABCD是菱形,作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,求出ME即可.【详解】解:作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,此时P′E′+P′F=ME′,过点A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小为.故答案为:.【点睛】本题考查翻折变换,等腰三角形的性质,轴对称−最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、4【解析】【分析】以AC为边作正△AFC,并作FH⊥AC,垂足为点H,连接FD、CE,由直角三角形可求BC=4,,由“SAS”可证△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此时,故CE的最小值是.【详解】解:以AC为边作正△AFC,并作FH⊥AC,垂足为点H,连接FD、CE,如图:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等边三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴当FD⊥BD时,FD最小,此时∠FDC=∠DCH=∠CHF=90°,∴四边形FDCH是矩形,∴,∴CE的最小值是.故答案为:4,.【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握等边三角形的性质.三、解答题1、(1)见解析;(2)2【分析】(1)利用ASA定理证明△AEB≌△AED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答.【详解】解:(1)证明:∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵点F是BC的中点,∴BF=FC,∴EF是△BCD的中位线,∴EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵点F是BC的中点,∴BF=FC,∴EF是△BCD的中位线,∴EF=CH=(AH-AC)=2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2、是,理由见解析【分析】根据已知得出只需求得其BF与BC的比是否符合黄金比即可.【详解】解:点F是BC的黄金分割点.理由如下:∵四边形是一个正方形,∴.又∵在矩形中,BC=AD=2,∴.∴点F是BC的黄金分割点.【点睛】此题主要考查了黄金分割点,根据已知条件和正方形的性质进行分析求解是解题关键.3、(1)见详解;(2)见详解.【分析】(1)根据勾股定理求出AB的长,以AB为对角线的正方形AEBF,根据正方形的性质求出正方形边长AE=,根据勾股定理构造直角三角形横1竖3,或横3竖1,利用点A平移找到点E,点F即可完成求解;(2)根据勾股定理求出CD的长,△CDM为等腰直角三角形,设CM=DM=x,再利用勾股定理,根据勾股定理构造横1竖2,或横2竖1直角三角形,利用点C平移得到点M,即可得到答案.【详解】(1)根据勾股定理AB=,∵以AB为对角线的正方形AEBF,∴S正方形=,∵正方形AEBF的边长为AE,∴AE2=10,∴AE=,根据勾股定理可知构造横1竖3或横3竖1的直角三角形作线段AE、AF,点A向下平移1格,再向左平移3格得点E,点A向右平移1格,再向下平移3格得点F,∴连结AE,BE,BF,AF,则正方形ABEF作图如下:(2)根据勾股定理,∵△CDM为等腰直角三角形,设CM=DM=x,根据勾股定理,即,解得,∴CM=DM=,根据勾股定理构造横1竖2,或横2竖1直角三角形作线段CM、DM,点C向右移动2格,再向上移动1格得点M,连结CM,DM,则△CDM为所求如图.

【点睛】本题考查了正方形性质、正方形面积,边长,等腰直角三角形、腰长,勾股定理,一元二次方程,平移;解题的关键是熟练掌握正方形性质、等腰直角三角形性质,勾股定理,一元二次方程,平移,从而完成求解.4、(1)证明见详解;(2)与面积相等的平行四边形有、、、.【分析】(1)根据三角形中位线定理可得:,,,,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论