解析卷-福建泉州市永春第一中学7年级数学下册第四章三角形定向练习练习题_第1页
解析卷-福建泉州市永春第一中学7年级数学下册第四章三角形定向练习练习题_第2页
解析卷-福建泉州市永春第一中学7年级数学下册第四章三角形定向练习练习题_第3页
解析卷-福建泉州市永春第一中学7年级数学下册第四章三角形定向练习练习题_第4页
解析卷-福建泉州市永春第一中学7年级数学下册第四章三角形定向练习练习题_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建泉州市永春第一中学7年级数学下册第四章三角形定向练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,图形中的的值是()A.50 B.60 C.70 D.802、有一个三角形的两边长分别为2和5,则第三边的长可能是()A.2 B.2.5 C.3 D.53、已知的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,104、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为()A.6 B.8 C.6或8 D.4或65、将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是()A.10° B.15° C.20° D.25°6、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为()A.8 B.10 C.20 D.407、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.68、下列三角形与下图全等的三角形是()A. B.C. D.9、如图,在△ABC中,BC边上的高为()A.AD B.BE C.BF D.CG10、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、在中,,则的取值范围是_______.2、如图,在中,D、E分别为AC、BC边上一点,AE与BD交于点F.已知,,且的面积为60平方厘米,则的面积为______平方厘米;如果把“”改为“”其余条件不变,则的面积为______平方厘米(用含n的代数式表示).3、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.4、如图,已知,请添加一个条件,使得,则添加的条件可以为___(只填写一个即可).5、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.6、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按图中所示位置摆放,点D在边AB上,EFBC,则∠ADF的度数为_____度.7、如图,△ABC≌△DEF,BE=a,BF=b,则CF=___.8、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是_____.9、如图,在中,平分,于点E,若的面积为,则阴影部分的面积为________.10、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.三、解答题(6小题,每小题10分,共计60分)1、如图,点B、F、C、E在同一条直线上,∠B=∠E,AB=DE,BF=CE.求证:AC=DF.2、如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)求∠ADB的度数;(2)线段DE,AD,DC之间有什么数量关系?请说明理由.(提示:在线段DE上截取线段EM=BD,连接线段AM或者在线段DE上截取线段DM=AD连接线段AM).3、如图,四边形中,,,于点.(1)如图1,求证:;(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.4、在中,,是射线上一点,点在的右侧,线段,且,连结.(1)如图1,点在线段上,求证:.(2)如图2,点在线段延长线上,判断与的数量关系并说明理由.5、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.6、已知三角形的两边长分别是4cm和9cm,如果第三边长是奇数,求第三边的长-参考答案-一、单选题1、B【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得:∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.2、D【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】解:设第三边为x,则5−2<x<5+2,即3<x<7,所以选项D符合题意.故选:D.【点睛】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.4、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5、B【分析】根据三角板各角度数和三角形的外角性质可求得∠BFE,再根据对顶角相等求解即可.【详解】解:由题意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故选:B.【点睛】本题考查三角板各角的度数、三角形的外角性质、对顶角相等,熟知三角板各角的度数,掌握三角形的外角性质是解答的关键.6、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,的面积为,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.7、C【分析】证明△AOB≌△COD推出OB=OD,OA=OC,即可解决问题.【详解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.8、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.【详解】由题可知,第三个内角的度数为,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D.两边夹的角度数不相等,故两三角形不全等,故此选项错误.故选:C.【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.9、A【分析】根据三角形的高线的定义解答.【详解】解:根据三角形的高的定义,AD为△ABC中BC边上的高.故选:A.【点睛】本题主要考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,熟记概念是解题的关键.10、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.二、填空题1、【分析】由构成三角形的条件计算即可.【详解】∵中∴∴.故答案为:.【点睛】本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.2、6【分析】连接CF,依据AD=CD,BE=2CE,且△ABC的面积为60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,依据S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面积为6平方厘米;当BE=nCE时,运用同样的方法即可得到△ADF的面积.【详解】如图,连接CF,∵AD=CD,BE=2CE,且△ABC的面积为60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面积为6平方厘米;当BE=nCE时,S△AEC=,设S△AFD=S△CFD=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面积为平方厘米;故答案为:【点睛】本题主要考查了三角形的面积的计算,解决问题的关键是作辅助线,根据三角形之间的面积关系得出结论.解题时注意:三角形的中线将三角形分成面积相等的两部分.3、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX是AC的垂线,∴∠BCA=∠PAQ=90°,∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP,∴;当△ACB≌△PAQ,∴,故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.4、或【分析】根据全等三角形的判定方法即可解决问题.【详解】解:由题意,,根据,可以添加,使得,根据,可以添加,使得.故答案为:或【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.5、20【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.【详解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.6、75【分析】设CB与ED交点为G,依据平行线的性质,即可得到∠CGD的度数,再根据三角形外角的性质,得到∠BDE的度数,即可得∠ADF的度数.【详解】如图所示,设CB与ED交点为G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案为:75.【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.7、##【分析】先利用线段和差求EF=BE﹣BF=a-b,根据全等三角形的性质BC=EF,再结合线段和差求出FC可得答案.【详解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案为:.【点睛】本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.8、在三角形中,两边之和大于第三边【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.9、6【分析】证点E为AD的中点,可得△ACE与△ACD的面积之比,同理可得△ABE和△ABD的面积之比,即可解答出.【详解】解:如图,平分,于点E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴阴影部分的面积为S△ACE+S△ABE=S△ABC=×12=6.故答案为6.【点睛】本题主要考查了全等三角形的判定与性质及三角形面积的等积变换,解题关键是明确三角形的中线将三角形分成面积相等的两部分.10、(答案不唯一)【分析】在与中,已经有条件:所以补充可以利用证明两个三角形全等.【详解】解:在与中,所以补充:故答案为:【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.三、解答题1、见解析【分析】根据题意得出BC=EF,即可利用SAS证明△ABC和△DEF,再利用全等三角形的性质即可得解.【详解】证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF.【点睛】本题考查了全等三角形的判定与性质,利用SAS证明△ABC≌△DEF是解题的关键.2、(1)∠ADB的度数为.(2),证明见解析.【分析】(1)利用已知条件,先证明,再通过全等三角形的性质,求解,最后利用三角形内角和为,即可求出∠ADB的度数.(2)在线段DE上截取线段DM=AD连接线段AM,证明,进而得到,最后即可证得结论成立.【详解】(1)解:,为等腰三角形,,,,,.,.在中,..(2)解:,证明:如图所示:在线段DE上截取线段DM=AD,并连接线段AM,,,是等边三角形,,,,,,,,,.【点睛】本题主要是考查了三角形的全等以及等腰三角形的性质,正确找到判定三角形全等的条件,并利用其性质证明角相等或边相等,是解决本题的关键,另外,证明边长之间的关系,一般会在较长的边上进行截取,这个做题技巧,需要注意.3、(1)见解析;(2)见解析;(3)2【分析】(1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;(2)在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;(3)过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论