




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市北山中学7年级数学下册第四章三角形同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,点、、、在同一条直线上,已知,,添加下列条件中的一个:①;②;③;④.其中不能确定的是()A.① B.② C.③ D.④2、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.83、如果一个三角形的两边长分别为5cm和8cm,则第三边长可能是()A.2cm B.3cm C.12cm D.13cm4、如图,AB∥CD,∠E+∠F=85°,则∠A+∠C=()A.85° B.105°C.115° D.95°5、如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A. B.C. D.6、如图,一扇窗户打开后,用窗钩AB可将其固定()A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边7、如图,已知为的外角,,,那么的度数是()A.30° B.40° C.50° D.60°8、已知线段AB=9cm,AC=5cm,下面有四个说法:①线段BC长可能为4cm;②线段BC长可能为14cm;③线段BC长不可能为3cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①② B.③④ C.①②④ D.①②③④9、如图,点A在DE上,点F在AB上,△ABC≌△EDC,若∠ACE=50°,则∠DAB=()A.40° B.45° C.50° D.55°10、如图,,,,,垂足分别为、,且,,则的长是()A.2 B.3 C.5 D.7第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.若AD=3cm,BE=1cm,则DE=_________.2、如图,△ABC≌△DEF,BE=a,BF=b,则CF=___.3、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.4、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.5、如图,在长方形ABCD中,,.延长BC到点E,使,连结DE,动点P从点B出发,以每秒2个单位长度的速度沿向终点A运动.设点P的运动时间为t秒,当t的值为______________时,和全等.6、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.7、如图,,则的长为________.8、如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,设∠A=.则∠A1=_______(用含的式子表示).9、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.10、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于_______三、解答题(6小题,每小题10分,共计60分)1、如图,已知AB=AD,AC=AE,BC=DE,延长BC分别交边AD、DE于点F、G.(1)∠B与∠D相等吗?为什么?(2)若∠CAE=49°,求∠BGD的度数.2、在边长为10厘米的等边三角形△ABC中,如果点M,N都以3厘米/秒的速度匀速同时出发.(1)若点M在线段AC上由A向C运动,点N在线段BC上由C向B运动.①如图①,当BD=6,且点M,N在线段上移动了2s,此时△AMD和△BND是否全等,请说明理由.②求两点从开始运动经过几秒后,△CMN是直角三角形.(2)若点M在线段AC上由A向点C方向运动,点N在线段CB上由C向点B方向运动,运动的过程中,连接直线AN,BM,交点为E,探究所成夹角∠BEN的变化情况,结合计算加以说明.3、证明“全等三角形的对应角的平分线相等”.要求:将已有图形根据题意补充完整,并据此写出己知、求证和证明过程.4、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.5、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)当直线MN绕点C旋转到图①的位置时,易证△ADC≌△CEB(不需要证明),进而得到DE、AD、BE之间的数量关系为.(探究)(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE.(3)当直线MN绕点C旋转到图③的位置时,直接写出DE、AD、BE之间的数量关系.6、如图,在中,、分别是上的高和中线,,,求的长.-参考答案-一、单选题1、B【分析】由已知条件知可得:∠A=∠D,AB=DE,再结合全等三角形的判定定理进行解答即可.【详解】解:已知条件知:∠A=∠D,AB=DEA、当添加AC=DF时,根据SAS能判,故本选项不符合题意;B、当添加BC=EF时则BC=EF,根据SSA不能判定,故本选项符合题意;C、当添加时,根据ASA能判定,故本选项不符合题意;D、当添加时,根据AAS能判定,故本选项不符合题意.故选:B.【点睛】本题主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成为解答本题的关键.2、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出的面积.【详解】∵AD是BC上的中线,∴,∵CE是中AD边上的中线,∴,∴,即,∵的面积是2,∴.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.3、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c,由题可知,即,所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点4、D【分析】设交于点,过点作,根据平行线的性质可得,根据三角形的外角性质可得,进而即可求得【详解】解:设交于点,过点作,如图,∵∴∠E+∠F=85°故选D【点睛】本题考查了平行线的性质,三角形的外角性质,平角的定义,掌握三角形的外角性质是解题的关键.5、B【分析】根据三角形全等的判定定理(定理和定理)即可得.【详解】解:A、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;B、此项满足定理,与全等,符合题意;C、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;D、中,角度为的夹边长为,则此项不满足定理,与不全等,不符题意;故选:B.【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.6、A【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.7、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.8、D【分析】分三种情况:C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:∵线段AB=9cm,AC=5cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=9−5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A,B,C不在一条直线上,9−5=4cm<BC<9+5=14cm,故线段BC可能为9cm,不可能为3cm,故③,④正确.故选D.【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键.9、C【分析】首先根据△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性质求解即可.【详解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故选:C.【点睛】此题考查了三角形全等的性质,三角形外角的性质,解题的关键是熟练掌握三角形全等的性质,三角形外角的性质.10、B【分析】根据,,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,从而证得△ACE≌△CBD,进而得到CE=BD,AE=CD,即可求解.【详解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故选:B【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.二、填空题1、2cm【分析】易证∠CAD=∠BCE,即可证明BEC≌△DAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.【详解】解:∵∠ACB=90°,∴∠BCE+∠DCA=90°.∵AD⊥CE,∴∠DAC+∠DCA=90°.∴∠BCE=∠DAC,在△BEC和△DAC中,∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,∴△BEC≌△DAC(AAS),∴CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2cm.故答案是:2cm.【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证△CDA≌△BEC是解题的关键.2、##【分析】先利用线段和差求EF=BE﹣BF=a-b,根据全等三角形的性质BC=EF,再结合线段和差求出FC可得答案.【详解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案为:.【点睛】本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.3、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX是AC的垂线,∴∠BCA=∠PAQ=90°,∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP,∴;当△ACB≌△PAQ,∴,故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.5、1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】解:当点P在BC上时,∵AB=CD,∴当△ABP≌△DCE,得到BP=CE,由题意得:BP=2t=2,∴t=1,当P在AD上时,∵AB=CD,∴当△BAP≌△DCE,得到AP=CE,由题意得:AP=6+6-4﹣2t=2,解得t=7.∴当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解.6、20【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.故答案为:20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7、3【分析】根据,可得到,再由,可得,从而得到,即可求解.【详解】解:∵,∴,∵,∴,即,∴,∴.故答案为:3【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.8、【分析】根据角平分线的定义、三角形的外角的性质计算即可.【详解】∵∠ABC与∠ACD的平分线交于A1点,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案为:.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9、15【分析】根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.【详解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可证△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案为:15.【点睛】本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.10、15【分析】连接DF,根据AE=ED,BD=3DC,可得,,,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF,∵AE=ED,∴,,∵BD=3DC,∴,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴,解得:.故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到,,,是解题的关键.三、解答题1、(1)相等,理由见解析;(2).【分析】(1)根据SSS证明,然后由全等三角形对应边相等即可证明;(2)由可得,进而可求出,然后根据三角形外角的性质即可求出∠BGD的度数.【详解】解:(1)相等,理由如下:在和中,∴,∴;(2)∵,∴,∴,∵,,∴.【点睛】此题考查了全等三角形的性质和判定,三角形外角的性质,解题的关键是熟练掌握根据题意证明.2、(1)①证明见解析;②经过或秒后,△CMN是直角三角形;(2)∠BEN=60°,证明见解析【分析】(1)①根据题意得出AM=BD,AD=BN,根据等边三角形的性质得到∠A=∠B=∠C=60°,利用SAS定理证明△AMD≌△BDN;②分∠CNM=90°、∠CMN=90°两种情况,根据直角三角形的性质列式计算即可;(2)证明△ABM≌△CAN,根据全等三角形的性质得到∠ABM=∠CAN,根据三角形的外角性质计算,得到答案.【详解】(1)①∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,当点M,N在线段上移动了2s时,AM=6厘米,CN=6厘米,∴BN=BC﹣CN=4厘米,∵AB=10厘米,BD=6厘米,∴AD=4厘米,∴AM=BD,AD=BN,在△AMD和△BDN中,,∴△AMD≌△BDN(SAS);②设经过t秒后,△CMN是直角三角形,由题意得:CM=(10﹣3t)厘米,CN=3t厘米,当∠CNM=90°时,∵∠C=60°,∴∠CMN=30°,∴CM=2CN,即10﹣3t=2×3t,解得:t=,当∠CMN=90°时,CN=2CM,即2(10﹣3t)=3t,解得:t=,综上所述:经过或秒后,△CMN是直角三角形;(2)如图所示,由题意得:AM=CN,在△ABM和△CAN中,,∴△ABM≌△CAN(SAS),∴∠ABM=∠CAN,∴∠BEN=∠ABE+∠BAE=∠CAN+∠BAE=60°.【点睛】本题考查了全等三角形的判断以及列一元一次方程动点相关问题,两边和它们的夹角对应相等的两个三角形全等;一元一次方程与几何图形的相结合的题,多数会涉及到动点的问题,需要对动点的位置进行讨论,讨论时要注意讨论全面,做到不重不漏,通常会按照从左到右或从上到下的方位进行考虑.3、见解析.【分析】根据图形和命题写出已知求证,根据全等三角形的性质得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根据角平分线的定义得出∠BAD=∠B′A′D′,根据全等三角形的判定得出△BAD≌△B′A′D′,再根据全等三角形的性质得出答案即可.【详解】解:如图,已知:△ABC≌△A′B′C′,AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,求证:AD=A′D′,证明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【点睛】本题考查了全等三角形的判定定理和性质定理,能求出△BAD≌△B′A′D′是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,两直角三角形全等还有HL,全等三角形的对应边相等.4、(1)(2)见解析(3)【分析】(1)利用边相等和角相等,直接证明,即可得到结论.(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.(3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:,,,在和中,,.(2)解:当点D在线段AC的延长线上时,如下图所示:,,,在和中,,,,.(3)解:,如下图所示:,,,在和中,,,,.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.5、(1)DE=AD+BE;(2)见解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论