考点解析-北师大版9年级数学上册期末试题附答案详解_第1页
考点解析-北师大版9年级数学上册期末试题附答案详解_第2页
考点解析-北师大版9年级数学上册期末试题附答案详解_第3页
考点解析-北师大版9年级数学上册期末试题附答案详解_第4页
考点解析-北师大版9年级数学上册期末试题附答案详解_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.2、一元二次方程配方后可化为(

)A. B.C. D.3、如图,在矩形ABCD中,E,F分别是AD,BC的中点,连结AF,BE,CE,DF分别交于点M,N,则四边形EMFN是()A.梯形 B.菱形C.矩形 D.无法确定4、关于x的一元二次方程根的情况,下列说法正确的是(

)A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定5、下列方程中,一定是关于x的一元二次方程的是(

)A. B.C. D.6、关于x的方程有两个实数根,,且,那么m的值为(

)A. B. C.或1 D.或4二、多选题(6小题,每小题2分,共计12分)1、如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC不相似的是()A. B. C. D.2、如图,将绕正方形ABCD的顶点A顺时针旋转90°得,连结EF交AB于H,则下列结论正确的是(

)A.AE⊥AF B.EF∶AF=∶1C.AF2=FH·FE D.FB∶FC=HB∶EC3、下列多边形中,一定不相似的是(

)A.两个矩形 B.两个菱形 C.两个正方形 D.两个平行四边形4、如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有()A. B.C. D.5、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(

)A. B. C.3 D.56、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论,其中正确的结论是()A.AC=FG B.S△FAB:S四边形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ•AC第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、小明的身高为1.6,他在阳光下的影长为2,此时他旁边的旗杆的影长为15,则旗杆的高度为_______.2、关于的方程,k=_____时,方程有实数根.3、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)4、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是__________.5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.6、中国“一带一路”倡议给沿线国家带来很大的经济效益.若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为______________.7、若,则________.8、在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是_____.四、解答题(6小题,每小题10分,共计60分)1、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.2、圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过31.4万亿位.有学者发现,随着小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.

(1)从的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)3、在等边三角形中,,D为的中点.连接,E,F分别为,的中点,将绕点C逆时针旋转,记旋转角为,直线和直线交于点G.(1)如图1,线段和线段的数量关系是________________,直线与直线相交所成的较小角的度数是________________.(2)将图1中的绕点C逆时针旋转到图2所示位置时,判断(1)中的结论是否仍然成立?若成立,请仅就图2的情形给出证明;若不成立,请说明理由.(3)在(2)的条件下,当以点C,F,E,G为顶点的四边形是矩形时,请直接写出的长.4、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.5、用适当的方法解下列方程:(1)

(2)6、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.-参考答案-一、单选题1、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.2、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3、B【解析】【分析】求出四边形ABFE为平行四边形,四边形BFDE为平行四边形,根据平行四边形的性质得出BE∥FD,即ME∥FN,同理可证EN∥MF,得出四边形EMFN为平行四边形,求出ME=MF,根据菱形的判定得出即可.【详解】连接EF.∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵E,F分别为AD,BC中点,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四边形ABFE为平行四边形,四边形BFDE为平行四边形,∴BE∥FD,即ME∥FN,同理可证EN∥MF,∴四边形EMFN为平行四边形,∵四边形ABFE为平行四边形,∠ABC为直角,∴ABFE为矩形,∴AF,BE互相平分于M点,∴ME=MF,∴四边形EMFN为菱形.故选B.【考点】本题考查了矩形的性质和判定,菱形的判定,平行四边形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,题目比较好,综合性比较强.4、A【解析】【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【详解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【考点】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得.【详解】解:A、,当时,不是一元二次方程,故不符合题意;B、,是一元二次方程,符合题意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B.【考点】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键.6、A【解析】【分析】通过根与系数之间的关系得到,,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值.【详解】解:∵方程有两个实数根,,∴,,∵,∴,整理得,,解得,,,若使有实数根,则,解得,,所以,故选:A.【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.二、多选题1、BCD【解析】【分析】先判断格中所画格点三角形为直角三角形,利用两组对应边的比相等且夹角对应相等的两个三角形相似,否则不相似,对各选项进行判断.【详解】解:由图知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A选项中,三条线段的长为,因为,此三角形为直角三角形,长直角边与短直角边的比为2,所以A选项的方格中所画格点三角形(阴影部分)与△ABC相似,不符合题意;B选项中,长直角边与短直角边的比为3,所以B中格点三角形与△ABC不相似,符合题意;C选项中,三条线段的长为√,因为,此三角形为直角三角形,两直角边的比为1,所以C选项的方格中所画格点三角形(阴影部分)与△ABC不相似,符合题意;D选项中,三角形的两直角边的比为1:1.所以D中格点三角形与△ABC不相似,符合题意,故选:BCD.【考点】本题考查相似三角形的判定,能在格点中表示各个线段的长度和掌握相似三角形的判定定理是解决此题的关键.2、ABD【解析】【分析】由旋转得到,进而可得,根据等腰直角三角形的性质以及勾股定理可得EF∶AF=∶1,根据相似三角对应边的比等于相似比可得FB∶FC=HB∶EC,而根据题意无法证明AF2=FH·FE,由此即可求得答案.【详解】解:∵四边形ABCD是正方形,∴,,∵旋转,∴,,,∴,即.,故A正确;是等腰直角三角形,,,(舍负),∴,故B正确;,,,故D正确.与不相似,∴无法证得,即无法证得,故C不正确.故选:ABD.【考点】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等相关知识,熟练掌握相似三角形的判定与性质是解决本题的关键.3、ABD【解析】【分析】利用相似多边形的对应边的比相等,对应角相等分析.【详解】解:要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,选项A、B、D符合题意;而两个正方形,对应角都是90°,对应边的比也都相等,故一定相似,选项C不符合题意.故选:ABD.【考点】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.4、BCD【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A不符合题意;锐角三角形、正五边形、直角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、C、D符合题意.故选BCD.【考点】此题主要考查了相似图形判定,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.5、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.6、ABCD【解析】【分析】根据正方形的性质及垂直的定义证明△CAD≌△GFA,即可判断A选项;证明四边形CBFG是矩形,由此判断B选项;根据矩形的性质及等腰直角三角形的性质即可判断C选项;证明△CAD∽△EFQ,即可判断D选项.【详解】解:∵四边形ADEF为正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A选项正确;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四边形CBFG是平行四边形,∵,∴四边形CBFG是矩形,∴S△FAB:S四边形CBFG=1:2,故B选项正确;∵四边形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C选项正确;∵四边形ADEF为正方形,∴,AD=EF,∴,∵四边形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ•AC,故D选项正确;故选:ABCD.【考点】此题考查矩形的判定及性质,等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,熟记各知识点并熟练应用解决问题是解题的关键.三、填空题1、12【解析】【分析】设这根旗杆的高度为xm,利用某一时刻物体的高度与它的影长的比相等得到,然后利用比例性质求x即可.【详解】设这根旗杆的高度为xm,根据题意得解得x=12(m),即这根旗杆的高度为12m.故答案为12.【考点】本题考查了相似三角形的应用:利用影长测量物体的高度;利用相似测量河的宽度(测量距离);借助标杆或直尺测量物体的高度.2、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:①当时,直接进行求解;②当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合①②即可求出满足题意的k的取值范围.【详解】解:①当时,方程化为:,解得:,符合题意;②当时,∵方程有实数根,∴,即,解得:,∴且;综上所述,当时,方程有实数根,故答案为:.【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键.3、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.4、【解析】【分析】列举出所有情况,看球的顺序依次是“红黄蓝”的情况数占所有情况数的多少即可.【详解】解:画出树形图:共有27种情况,球的顺序依次是“红黄蓝”的情况数有1种,所以概率为.故答案为:.【考点】考查用列树状图的方法解决概率问题;得到球的顺序依次是“红黄蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.5、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.6、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴该地区人均收入增长率为20%.故本题答案应为:20%.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.7、【解析】【分析】设,,代入求解即可.【详解】由可设,,k是非零整数,则.故答案为:.【考点】本题主要考查了比例的基本性质,准确利用性质变形是解题的关键.8、5【解析】【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为6,进行尝试,可确定、、为边的这样一组三角形满足条件.【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.【考点】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.四、解答题1、(1)(2)|PC−PD|最大时a的值为6(3)存在,点M的坐标为(,)【解析】【分析】(1)先确定出OE=CE=2,即可得出点C坐标,最后用待定系数法即可得出结论;(2)先求出OC解析式,由平行四边形的性质可得BC=OA=3,BC∥OA,AB∥OC,利用待定系数法可求AB解析式,求出点D的坐标,再根据三角形关系可得出当点P,C,D三点共线时,|PC-PD|最大,求出直线CD的解析式,令y=0即可求解;(3)若四边形CAMN为矩形,则△CAM是直角三角形且AC为一条直角边,根据直角顶点需要分两种情况,画出图形分别求解即可.(1)解:如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=;(2)解:∵点C(2,2),点O(0,0),∴OC解析式为:y=x,∵四边形OABC是平行四边形,点A坐标为(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴点B(5,2),∴设AB解析式为:y=x+b,∴2=5+b,∴b=-3,∴AB解析式为:y=x-3,联立方程组可得:,∴或(舍去),∴点D(4,1);在△PCD中,|PC-PD|<CD,则当点P,C,D三点共线时,|PC-PD|=CD,此时,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),设直线CD的解析式为:y=mx+n,∴,解得,∴直线CD的解析式为:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大时a的值为6;(3)(3)存在,理由如下:若四边形CAMN为矩形,则△CAM是直角三角形,则①当点A为直角顶点时,如图2,过点A作AC的垂线与y=交于点M,分别过点C,M作x轴的垂线,垂足分别为点F,G,由“一线三等角”模型可得△AFC∽△MGA,则AF:MG=CF:AG,∵C(2,2),A(3,0),∴OF=CF=2,AF=1,∴1:MG=2:AG,即MG:AG=1:2,设MG=t,则AG=2t,∴M(2t+3,t),∵点M在反比例函数y=的图象上,则t(2t+3)=4,解得t=,(负值舍去),∴M(,);②当点C为直角顶点时,这种情况不成立;综上,点M的坐标为(,).【考点】本题考查了反比例函数综合问题,涉及矩形的判定与性质,相似三角形的性质与判定.第一问的关键是求出点C的坐标,第二问的关键是知道当点P,C,D三点共线时,|PC-PD|取得最大值,第三问的关键是利用矩形的内角是直角进行分类讨论,利用相似三角形的性质建立等式.2、(1);(2)见解析,【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,∴数字是6的概率为,故答案为:;(2)解:画树状图如图所示:∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.∴(其中有一幅是祖冲之).【考点】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.3、(1),;(2)结论仍然成立;证明见解析;(3)或.【解析】【分析】(1)先根据等边三角形的性质可得,再根据含角的直角三角形的性质以及三角形中位线定理求解即可;(2)由(1)的结论以及旋

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论