




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、估计的值应在()A.7和8之间 B.6和7之间C.5和6之间 D.4和5之间2、若a=2021×2022﹣20212,b=1013×1008﹣1012×1007,c,则a,b,c的大小关系是()A.c<b<a B.a<c<b C.b<a<c D.b<c<a3、若一元二次方程的较小根为,则下面对的值估计正确的是()A. B. C. D.4、下列方程中是一元二次方程的是()A. B. C. D.5、下列各根式中,最简二次根式是()A. B. C. D.6、估算的值应在()A.和之间 B.和之间 C.和之间 D.和之间7、下列四组数中,不能构成直角三角形边长的一组数是()A.0.3,0.4,0.5 B.1,, C.14,16,20 D.6,8,108、以下列各组数为三边的三角形中不是直角三角形的是()A.1、、2 B.6、10、8 C.3、4、5 D.6、5、4第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,点O是平行四边形ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1,S2,那么S1,S2之间的关系为S1______S2.(填“>”或“=”或“<”)2、如图,在等腰△ABC中,∠BAC=30°,AB=AC,BC=4,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,△PQR周长的最小值是______.3、某试验田种植了杂交水稻,2019年平均亩产800千克,2021年平均亩产1000千克,设此水稻亩产量的平均增长率为x,则可列出的方程是______.4、设x1,x2是关于x的方程x2-3x+k=0的两个根,且x1=2x2,则k=____.5、一个三角形的两边长分别为3和5,其第三边是方程﹣13x+40=0的根,则此三角形的周长为___.6、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.7、重庆某风景区2021年三月份共接待游客4000人次,五月份共接待游客9000人次,则每月的平均增长率为______.三、解答题(6小题,每小题10分,共计60分)1、已知关于x的方程x(mx﹣4)=(x+2)(x﹣2).(1)若方程只有一个根,求m的值并求出此时方程的根;(2)若方程有两个不相等的实数根,求m的值.2、2021年12月9日15时40分,“天宫课堂”第一课开始,神舟十三号飞行任务乘组航天王亚平、叶光富在中国空间站进行了生动活泼的太空授课.这也是王亚平第二次进行太空授课,掀起了全国青少年学习航天知识的热潮.飞燕航模店看准商机推出了“神州十三号”,“天宫空间站”两款模型,两款模型一经推出销售火爆.在销售过程中发现,已知每个“天宫空间站”模型的售价比每个“神州十三号”模型的售价贵20元,6个“神州十三号”模型的总售价与5个“天宫空间站”模型的总售价相同.(1)求这两款模型的销售单价分别为多少元?(2)第一周该店在按(1)问中的售价进行销售后统计,“天宮空间站”模型售出了800个,“神州十三号”模型售出了1300个于是该店决定在第二周推出优惠活动,每个“天宮空间站”模型的售价在第一周的基础上降价,结果该款模型销量比第一周增加;每个“神州十三号”模型的售价在第一周的基础上降价,销量比第一周增加108个,结果第二周“神州十三号”模型的总销售额比“天宫空间站”模型的总销售额多44800元,求a的值.3、用适当的方法解下列方程:(1).(2).4、如图,矩形OABC在平面直角坐标系中,OB,OC是x2﹣12x+32=0的两根,OC>OA,(1)求B点的坐标.(2)把ABC沿AC对折,点B落在点处,线段与x轴交于点D,在平面上是否存在点P,使D、C、B、P四点形成的四边形为平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.5、如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3.点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为.连接AP(1)当t=3秒时,求AP的长度(结果保留根号);(2)当点P在线段AB的垂直平分线上时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?6、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为,图中的值为;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?-参考答案-一、单选题1、A【分析】原式利用二次根式乘除法运算法则计算得到结果,估算即可.【详解】解:∵16<24<25,即42<<52,∴4<2<5,∴7<3+2<8,∴的值应在7和8之间.故选:A.【点睛】此题考查了估算无理数的大小,以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.2、D【分析】先分别化简各数,然后再进行比较即可.【详解】解:a=2021×2022-20212=2021×(2022-2021)=2021,b=1013×1008﹣1012×1007=(1012+1)(1007+1)-1012×1007=1012×1007+1012+1007+1-1012×1007=1012+1007+1=2020,c====,∴2020<c<2021,∴b<c<a,故选D.【点睛】本题考查了二次根式的性质与化简,实数的大小比较,准确化简各数是解题的关键.3、A【分析】求出方程的解,求出方程的最小值,即可求出答案.【详解】x2-2x-1=0,x2-2x+1=2,即(x-1)2=2,∴x=1±,∴方程的最小值是1-,∵1<<2,∴-2<-<-1,∴1-2<1-<-1+1,∴-1<1-<0,∴-1<x1<0,故选:A.【点睛】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小.4、B【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.【详解】解:A、,是一元一次方程,故此选项不符合题意;B、,是一元二次方程,故此选项符合题意;C、,是分式方程,故此选项不符合题意;D、是二元二次方程,故此选项不符合题意;故选:B.【点睛】本题考查了一元二次方程的定义,解题时,要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).5、C【分析】根据题意直接利用最简二次根式的定义进行分析即可得出答案.【详解】、,故不是最简二次根式,不合题意;、,故不是最简二次根式,不合题意;、是最简二次根式,符合题意;、,故不是最简二次根式,不合题意;故选:.【点睛】本题考查最简二次根式,理解最简二次根式的意义是正确判断的前提,掌握“分母中不含有根式,被开方数是整式且不含有能开得尽方的因数或因式的二次根式是最简二次根式”是正确解答的关键.6、C【分析】根据二次根式的性质化简,进而根据无理数的大小估计即可求得答案【详解】解:∵,∴故选C【点睛】本题考查了二次根式的混合运算,无理数的大小估算,掌握二次根式的性质是解题的关键.7、C【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.【详解】解:A.∵0.32+0.42=0.52,∴以0.3,0.4,0.5为边能组成直角三角形,故本选项不符合题意;B.∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;C.∵142+162≠202,∴以14,16,20为边不能组成直角三角形,故本选项符合题意;D.∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查了勾股定理的逆定理,注意:如果一个三角形的两条边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.8、D【分析】利用勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:A、因为,所以是直角三角形,故本选项不符合题意;B、因为,所以是直角三角形,故本选项不符合题意;C、因为,所以是直角三角形,故本选项不符合题意;D、因为,所以不是直角三角形,故本选项符合题意;故选:D【点睛】本题考查的是勾股定理的逆定理的应用,掌握“勾股定理的逆定理:若则以为边的三角形是直角三角形”是解本题的关键.二、填空题1、=【分析】根据平行四边形的性质和全等三角形的判定和性质即可得到结论.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EDO=∠FBO,∵点O是▱ABCD的对称中心,∴OB=OD,在△DEO与△BFO中,∴△DEO≌△BFO(ASA),∴S△DEO=S△BFO,∵S△ABD=S△CDB,∴S1=S2.故答案为:=.【点睛】此题主要考查了中心对称,平行四边形的性质以及全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2、##【分析】过BC的中点P作AB,AC的对称点M,N,连接MN交AB与Q,交AC于R,则此时△PQR周长最小,求出MQ,RQ,RN即可解决问题.【详解】过点P作,的对称点M,N,连接交于Q,交于R,设交于点,则,,∴周长为,当四点共线时,即当点P是的中点时,的周长最小,如图∵,∴,,∴,∴,∴,,同理,∵,∴.∵,中,∴,∴周长的最小值是.故答案为:【点睛】本题是三角形综合题,考查了轴对称的性质,等边三角形的性质,等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.3、800(1+x)2=1000【分析】设此水稻亩产量的平均增长率为x,根据“2019年平均亩产×(1+增长率)2=2021年平均亩产”即可列出关于x的方程.【详解】解:设此水稻亩产量的平均增长率为x,则可列出的方程是800(1+x)2=1000.故答案是:800(1+x)2=1000.【点睛】本题考查了由实际问题抽象出一元一次方程,根据数量关系列出关于x的一元一次方程是解题的关键.4、2【分析】首先根据一元二次方程根与系数的关系得到,然后结合=2,求出和的值,然后根据根与系数的关系得到即可求出k的值.【详解】解:∵,是关于x的方程x2﹣3x+k=0的两个根,∴,,∴,解得,∴.故答案为:2.【点睛】此题考查了一元二次方程根与系数的关系,解二元一次方程组,解题的关键是熟练掌握一元二次方程根与系数的关系:,.5、13【分析】先求﹣13x+40=0的根,根据三角形存在性,后计算周长.【详解】∵﹣13x+40=0,∴=0,∴,当第三边为5时,三边为3,5,5,三角形存在,∴三角形的周长为3+5+5=13;当第三边为8时,三边为3,5,8,且3+5=8,三角形不存在,∴三角形的周长为13;故答案为:13.【点睛】本题考查了三角形的存在性,一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.6、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.7、50%【分析】设每月的平均增长率为x,然后根据题意列一元二次方程解答即可.【详解】解:设每月的平均增长率为x4000(1+x)2=9000解得x=0.5=50%或x=-0.5(不合题意舍去).故答案是50%.【点睛】本题主要考查了一元二次方程的应用—增长率问题,设出未知数、正确列出一元二次方程成为解答本题的关键.三、解答题1、(1)当时,方程的根为;当时,方程的根为(2)且【分析】(1)先去括号,将方程进行化简为,再分和两种情况,分别解一元一次方程、利用一元二次方程根的判别式即可得;(2)直接根据一元二次方程根的判别式大于0即可得.(1)解:方程可化为,分以下两种情况:①当时,方程为,解得;②当时,方程为关于的一元二次方程,则由一元二次方程根的判别式得:,解得,此时方程为,解得,综上,当时,方程的根为;当时,方程的根为;(2)解:方程为,若方程有两个不相等的实数根,则,解得且.【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键.2、(1)“神州十三号”模型销售单价为100元,“天宫空间站”模型销售单价为120元(2)【分析】(1)设“神州十三号”模型销售单价为元,“天宫空间站”模型销售单价为元,根据题意列二元一次方程组解方程组求解即可;(2)分别求得第二周“神州十三号”模型的总销售额与“天宫空间站”模型的总销售额,根据第二周“神州十三号”模型的总销售额比“天宫空间站”模型的总销售额多44800元,列出一元二次方程,解方程求解即可.(1)设“神州十三号”模型销售单价为元,“天宫空间站”模型销售单价为元,根据题意得,解得答:“神州十三号”模型销售单价为100元,“天宫空间站”模型销售单价为120元.(2)根据题意,得解得或(舍去)故【点睛】本题考查了二元一次方程组的应用,一元二次方程的应用,理解题意列出方程(组)是解题的关键.3、(1)x1=5,x2=-1;(2)x1=4,x2=-2.【分析】(1)根据直接开方法即可求出答案;(2)根据因式分解法即可求出答案.(1)解:∵(x-2)2=9,∴x-2=±3,∴x=2±3,∴x1=5,x2=-1;(2)解:∵x2−2x−8=0,因式分解得(x-4)(x+2)=0,∴x-4=0或x+2=0,∴x1=4,x2=-2.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4、(1)B(8,4);(2)存在,P1(3,4),P2(13,4),P3(3,-4)【分析】(1)x2﹣12x+32=0,解得x1=4,x2=8,OC>OA,故OA=4,OC=8,故B(8,4).(2)由对折可知,∠DAC=∠BAC,故∠DAC=∠ACO,AD=CD,设AD=x,则OD=8-x,在中,满足,解得x=5,故D点坐标为(3,0),由平行四边形性质可知P1(3,4),P2(13,4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【详解】(1)x2﹣12x+32=0,解得x1=4,x2=8,∵OC>OA,∴OA=4,OC=8,故B点坐标为(8,4)(2)由对折可知,∠DAC=∠BAC,又∵四边形OABC为矩形,∴AB//OC,∠BAC=∠ACO∴∠DAC=∠ACO,∴AD=CD,设AD=x,则OD=8-x,在中,满足有化简得解得x=5,故OD=8-5=3故D点坐标为(3,0)由平行四边形性质可知P1(3,4),P2(13,4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【点睛】本题考查了勾股定理,矩形的性质,平行四边形的性质,求出D点坐标,再根据平行四边形两对边分别平行且相等即可求得P点坐标.5、(1)(2)5(3)t为5或11【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)当点P在线段AB的垂直平分线上时,则PA=PB,再根据勾股定理列方程即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得:AP2.答:AP的长为;(2)当点P在线段AB的垂直平分线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微孔阵列排布与流体穿透效率的跨尺度拓扑优化关联模型
- 强腐蚀下的可靠性提升方案
- 建筑垃圾分碴车全生命周期碳排放核算与绿色转型路径研究
- 应急响应制图效率与灾前灾中多模态信息融合的时效性挑战
- 工业4.0背景下凹版印刷设备智能化运维的故障预测模型构建
- 人教版 高中生物必修2 第7章7.1 现代生物进化理论的由来 教学设计
- 地下管网改造项目进度动态管理方案
- 2025年建筑识图制图题库及答案
- 2025年计算机综合课真题及答案
- 宜春市烟草公司2025秋招法务岗位高频笔试题库含答案
- DB3502∕T 090-2022 居家养老紧急事件应急助援规范
- 腰椎间盘突出症护理查房课件
- 九年级化学人教版基于特定需求设计和制作简易供氧器(教学设计)
- SCAMPER创新思维模型
- 乡镇庆中秋迎国庆活动方案
- 山东科学技术出版社小学一年级上册综合实践活动教案
- 2024口腔医学专业考核标准
- 大型群众性活动安全许可申请表
- 小学数学人教版-六年级上-第一单元-分数乘法-教材分析
- 百融云创风险决策引擎V5产品操作手册
- DZ∕T 0033-2020 固体矿产地质勘查报告编写规范(正式版)
评论
0/150
提交评论