考点解析-合肥市第四十八中学7年级数学下册第四章三角形定向训练试卷(含答案详解)_第1页
考点解析-合肥市第四十八中学7年级数学下册第四章三角形定向训练试卷(含答案详解)_第2页
考点解析-合肥市第四十八中学7年级数学下册第四章三角形定向训练试卷(含答案详解)_第3页
考点解析-合肥市第四十八中学7年级数学下册第四章三角形定向训练试卷(含答案详解)_第4页
考点解析-合肥市第四十八中学7年级数学下册第四章三角形定向训练试卷(含答案详解)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

合肥市第四十八中学7年级数学下册第四章三角形定向训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D2、如图,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列选项中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E3、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°4、如图,点、、、在同一条直线上,已知,,添加下列条件中的一个:①;②;③;④.其中不能确定的是()A.① B.② C.③ D.④5、如图,在△ABC中,BC边上的高为()A.AD B.BE C.BF D.CG6、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm7、如图,在中,已知点,,分别为,,的中点,且,则的面积是()A. B.1 C.5 D.8、如图,,,,则下列结论:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④9、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是()A.95° B.90° C.85° D.80°10、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为设点的运动速度为,若使得与全等,则的值为______.2、如图,两根旗杆CA,DB相距20米,且CA⊥AB,DB⊥AB,某人从旗杆DB的底部B点沿BA走向旗杆CA底部A点.一段时间后到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角∠CMD=90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为每秒2米,则这个人从点B到点M所用时间是_____秒.3、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是_____.4、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是_____.5、如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,设∠A=.则∠A1=_______(用含的式子表示).6、如图,∠1=∠2,加上条件_____,可以得到△ADB≌△ADC(SAS).7、如图,△PBC的面积为5cm2,BP平分∠ABC,AP⊥BP于点P,则△ABC的面积为_____cm2.8、在平面直角坐标系中,点B(0,4),点A为x轴上一动点,连接AB.以AB为边作等腰Rt△ABE,(B、A、E按逆时针方向排列,且∠BAE为直角),连接OE.当OE最小时,点E的纵坐标为______.9、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.10、如图,于点D,于点E,BD,CE交于点F,请你添加一个条件:______(只添加一个即可),使得≌三、解答题(6小题,每小题10分,共计60分)1、如图,点B、F、C、E在同一条直线上,AB=DE,AC=DF,BF=EC.求证:∠A=∠D.2、如图,E为AB上一点,BD∥AC,AB=BD,AC=BE.求证:BC=DE.3、如图,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求证:AF=DE.4、如图,已知点A,C,D在同一直线上,BC与AF交于点E,AF=AC,AB=DF,AD=BC.(1)求证:∠ACE=∠EAC;(2)若∠B=50°,∠F=110°,求∠BCD的度数.5、如图,点A,B,C,D在一条直线上,,,.求证:.6、已知锐角,,于,于F,交于E.求证:ΔBDE≌若BD=8,DC=6,求线段BE的长度.-参考答案-一、单选题1、B【分析】利用全等三角形的判定方法对各选项进行判断.【详解】解:∵AC=BD,而AB为公共边,A、当∠BAD=∠ABC时,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;B、当∠BAC=∠ABD时,根据“SAS”可判断△ABC≌△BAD,该选项符合题意;C、当∠DAC=∠CBD时,由三角形内角和定理可推出∠D=∠C,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、C【分析】根据全等三角形的判定定理进行分析即可;【详解】根据已知条件可得,即,∵AC=DC,∴已知三角形一角和角的一边,根据全等条件可得:A.∠A=∠D,可根据ASA证明,A正确;B.BC=EC,可根据SAS证明,B正确;C.AB=DE,不能证明,C故错误;D.∠B=∠E,根据AAS证明,D正确;故选:C.【点睛】本题主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解题的关键.3、C【分析】由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.【详解】解:在射线AD上截取AE=AB,连接CE,如图所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC与△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故选:C.【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.4、B【分析】由已知条件知可得:∠A=∠D,AB=DE,再结合全等三角形的判定定理进行解答即可.【详解】解:已知条件知:∠A=∠D,AB=DEA、当添加AC=DF时,根据SAS能判,故本选项不符合题意;B、当添加BC=EF时则BC=EF,根据SSA不能判定,故本选项符合题意;C、当添加时,根据ASA能判定,故本选项不符合题意;D、当添加时,根据AAS能判定,故本选项不符合题意.故选:B.【点睛】本题主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成为解答本题的关键.5、A【分析】根据三角形的高线的定义解答.【详解】解:根据三角形的高的定义,AD为△ABC中BC边上的高.故选:A.【点睛】本题主要考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,熟记概念是解题的关键.6、C【分析】设三角形第三边的长为xcm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.7、B【分析】根据三角形面积公式由点为的中点得到,同理得到,则,然后再由点为的中点得到.【详解】解:点为的中点,,点为的中点,,,点为的中点,.故选:.【点睛】本题考查了三角形的中线与面积的关系,解题的关键是掌握是三角形的中线把三角形的面积平均分成两半.8、B【分析】根据全等三角形的性质直接判定①②,则有,然后根据角的和差关系可判定③④.【详解】解:∵,∴,故①②正确;∵,∴,故③错误,④正确,综上所述:正确的有①②④;故选B.【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9、C【分析】根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.【详解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故选C.【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.10、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:A.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.二、填空题1、或【分析】分两种情形:①当≌时,可得:;②当≌时,,根据全等三角形的性质分别求解即可.【详解】解:①当≌时,可得:,运动时间相同,,的运动速度也相同,;②当≌时,,,,,故答案为:或.【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识进行分类解决问题.2、4【分析】先说明,再利用证明,然后根据全等三角形的性质可得米,再根据线段的和差求得BM的长,最后利用时间=路程÷速度计算即可.【详解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵该人的运动速度,他到达点M时,运动时间为s.故答案为:4.【点睛】本题主要考查了全等三角形的判定与性质,根据题意证得是解答本题的关键.3、在三角形中,两边之和大于第三边【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.4、##【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.【详解】解:在和中,,,,则的面积是,故答案为:.【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.5、【分析】根据角平分线的定义、三角形的外角的性质计算即可.【详解】∵∠ABC与∠ACD的平分线交于A1点,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案为:.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6、AB=AC(答案不唯一)【分析】根据全等三角形的判定定理SAS证得△ADB≌△ADC.【详解】解:加上条件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB与△ADC中,,∴△ADB≌△ADC(SAS),故答案为:AB=AC(答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、10【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S阴影=10(cm2),故答案为:10.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.8、-2【分析】过E作EF⊥x轴于F,由三垂直模型,得EF=OA,AF=OB,设A(a,0),可求得E(a+4,a),点E在直线y=x-4上,当OE⊥CD时,OE最小,据此求出坐标即可.【详解】解:如图,过E作EF⊥x轴于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取点C(4,0),点D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴点E在直线CD上,当OE⊥CD时,OE最小,此时△EFO和△ECO为等腰Rt△,∴OF=EF=2,此时点E的坐标为:(2,-2).故答案为:-2【点睛】本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置.9、(答案不唯一)【分析】在与中,已经有条件:所以补充可以利用证明两个三角形全等.【详解】解:在与中,所以补充:故答案为:【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.10、(答案不唯一)【分析】由题意依据全等三角形的判定条件进行分析即可得出答案.【详解】解:∵于点D,于点E,∴,∵,∴当时,≌(AAS).故答案为:.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三、解答题1、见解析【分析】先证明BC=EF,让利用SSS证明△ABC≌△DEF即可得到∠A=∠D.【详解】证明:∵BF=EC,∴BF+FC=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2、见解析【分析】根据平行线的性质可得,利用全等三角形的判定定理即可证明.【详解】证明:∵,∴.在和中,,∴,∴.【点睛】题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键.3、见解析【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE.【详解】证明:∵AB⊥CB,DC⊥CB,∴∠B=∠C=90°,∵BE=CF,∴BF=CE,且∠A=∠D,∠B=∠C=90°,∴△ABF≌△DCE(AAS),∴AF=DE,【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.4、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论