基础强化人教版8年级数学下册《平行四边形》章节训练试卷(解析版)_第1页
基础强化人教版8年级数学下册《平行四边形》章节训练试卷(解析版)_第2页
基础强化人教版8年级数学下册《平行四边形》章节训练试卷(解析版)_第3页
基础强化人教版8年级数学下册《平行四边形》章节训练试卷(解析版)_第4页
基础强化人教版8年级数学下册《平行四边形》章节训练试卷(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》章节训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是()A. B. C. D.542、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是()A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形3、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B. C.6 D.84、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为()A.3 B.4 C.2.5 D.55、如图,正方形ABCO和正方形DEFO的顶点A、E、O在同一直线上,且EF=,AB=3,给出下列结论:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正确的个数为()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.2、如图,在矩形纸片ABCD中,AB=6,BC=4,点E是AD的中点,点F是AB上一动点将AEF沿直线EF折叠,点A落在点A′处在EF上任取一点G,连接GC,,,则的周长的最小值为________.3、如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的序号为__.4、如图,将n个边长都为1的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为_____.5、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,中,对角线AC、BD相交于点O,点E,F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.(1)求证:四边形EFGH是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________2、在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,过点D作DE⊥AB,交BC于点E,连接AE,取AE的中点P,连接DP,CP.(1)观察猜想:如图(1),DP与CP之间的数量关系是,DP与CP之间的位置关系是.(2)类比探究:将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.(3)问题解决:若BC=3BD=3,将图(1)中的△BDE绕点B在平面内自由旋转,当BE⊥AB时,请直接写出线段CP的长.3、阅读探究小明遇到这样一个问题:在中,已知,,的长分别为,,,求的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法,(1)图1中的面积为________.实践应用参考小明解决问题的方法,回答下列问题:(2)图2是一个的正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为,,的格点.②的面积为________(写出计算过程).拓展延伸(3)如图3,已知,以,为边向外作正方形和正方形,连接.若,,,则六边形的面积为________(在图4中构图并填空).4、如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.

(1)在方格纸中画出以AB为对角线的正方形AEBF,点E、F在小正方形的顶点上;(2)在方格纸中画出以CD为斜边的等腰直角三角形CDM,连接BM,并直接写出BM的长.5、如图,四边形ABCD为平行四边形,∠BAD的平分线AF交CD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE;(2)BE⊥AF.-参考答案-一、单选题1、C【解析】【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.【详解】如图,过点F作,分别交于M、N,∵四边形ABCD是矩形,∴,,∵点E是BC的中点,∴,∵F是AE中点,∴,∴.故选:C.【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.2、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:,,,,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.3、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【详解】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.4、C【解析】【分析】根据菱形的性质求得边长,进而根据三角形中位线定理求得的长度.【详解】∵四边形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵点H是AD中点,∴OH是△DAB的中位线,在Rt△AOB中,AB5,则OHAB=2.5故选C【点睛】本题考查了菱形的性质,三角形中位线定理,求得的长是解题的关键.5、B【解析】【分析】根据∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根据已知条件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延长线于G,根据勾股定理即可得到BD,根据三角形面积的关系计算即可;【详解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正确;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②错误;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③错误;④△COF的面积S△COF3×1,△EOF的面积S△EOF=()2=1S△COF+S△EOF=故④正确;正确的是①④;故选:B.【点睛】本题主要考查了正方形的性质,勾股定理,准确计算是解题的关键.二、填空题1、【解析】【分析】根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.【详解】解:连接BE,连接AE交FG于O,如图,∵四边形ABCD为菱形,∠A=60°,∴△BDC为等边三角形,∠ADC=120°,∵E点为CD的中点,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,设AF=x,∵菱形纸片翻折,使点A落在CD的中点E处,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案为:.【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、【解析】【分析】连接AC交EF于G,连接A′G,此时△CGA′的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.当CA′最小时,△CGA′的周长最小,求出CA′的最小值即可解决问题.【详解】解:如图,连接AC交EF于G,连接A′G,连接EC,由折叠的性质可知A′G=GA,此时△A′GC的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周长的最小值+CA′,当CA′最小时,△CGA′的周长最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值为2-2,∴△CGA′的周长的最小值为2-2,故答案为:.【点睛】本题考查翻折变换,矩形的性质,勾股定理,最短路径问题等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.3、①②③【解析】【分析】①连接BE,可得四边形EFBG为矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,则∠OBF=∠OFB;由∠OBF=∠ADE,则∠OFB=∠ADE;由四边形ABCD为正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的结论可得∠BFG=∠ADE;④由于点E为AC上一动点,当DE⊥AC时,根据垂线段最短可得此时DE最小,最小值为2,由①知FG=DE,所以FG的最小值为2.【详解】解:①连接BE,交FG于点O,如图,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四边形EFBG为矩形.∴FG=BE,OB=OF=OE=OG.∵四边形ABCD为正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE,交FG于M,交FB于点H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点,∴根据垂线段最短,当DE⊥AC时,DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值为2,∴④错误.综上,正确的结论为:①②③.故答案为:①②③.【点睛】本题考查了全等三角形的性质与判定,正方形的性质,勾股定理,垂线段最短,掌握正方形的性质是解题的关键.4、【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和.【详解】解:由题意可得一个阴影部分面积等于正方形面积的,即是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故答案为:.【点睛】本题考查了正方形的性质,解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.5、80°【解析】【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.三、解答题1、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到,再由(1)四边形EFGH是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、F、G、H分别是OA、OB、OC、OD的中点,∴,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形;(2)∵点E、F、G、H分别是OA、OB、OC、OD的中点,∴,∴,∵的周长为2(AB+BC)=32,∴,∴,由(1)知:四边形EFGH是平行四边形,∴四边形EFGH的周长为.【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.2、(1)PD=PC,PD⊥PC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PT⊥AB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQ⊥BC于Q,利用等腰直角三角形的性质求得,即可求解.【详解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵点P为AE的中点,∴,∴,,∴,∴故答案为:,.(2)结论成立.理由如下:过点P作PT⊥AB交BC的延长线于T,交AC于点O.则∴,∴,,由勾股定理可得:∴∴∴∵点P为AE的中点,∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如图3﹣1中,当点E在BC的上方时,过点P作PQ⊥BC于Q.则,∴∵∴由(2)可得,,,∴为等腰直角三角形∴∴由勾股定理得,如图3﹣2中,当点E在BC的下方时,同法可得PC=PD=2.综上所述,PC的长为4或2.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形.3、(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31.【分析】(1)根据网格可直接用割补法求解三角形的面积;(2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;(3)根据题意在网格中画出图形,然后在网格中作出,,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可.【详解】解:(1)△ABC的面积为:,故答案为:;(2)①作图如下(答案不唯一):②的面积为:,故答案为:8;(3)在网格中作出,,在与中,,∴,∴,,六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积,故答案为:31.【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.4、(1)见详解;(2)见详解.【分析】(1)根据勾股定理求出AB的长,以AB为对角线的正方形AEBF,根据正方形的性质求出正方形边长AE=,根据勾股定理构造直角三角形横1竖3,或横3竖1,利用点A平移找到点E,点F即可完成求解;(2)根据勾股定理求出CD的长,△CDM为等腰直角三角形,设CM=DM=x,再利用勾股定理,根据勾股定理构造横1竖2,或横2竖1直角三角形,利用点C平移得到点M,即可得到答案.【详解】(1)根据勾股定理AB=,∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论