




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南湘潭市电机子弟中学7年级数学下册第四章三角形专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30° B.40° C.50° D.60°2、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为()A.8 B.10 C.20 D.403、一把直尺与一块三角板如图放置,若,则()A.120° B.130° C.140° D.150°4、下列长度的三条线段能组成三角形的是()A.348 B.4410 C.5610 D.56115、如图,,,,则下列结论:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④6、如图,已知△ABC中,AB=AC,∠A=72°,D为BC上一点,在AB上取BF=CD,AC上取CE=BD,则∠FDE的度数为()A.54° B.56° C.64° D.66°7、已知线段AB=9cm,AC=5cm,下面有四个说法:①线段BC长可能为4cm;②线段BC长可能为14cm;③线段BC长不可能为3cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①② B.③④ C.①②④ D.①②③④8、如图,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列选项中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E9、下列各组图形中,是全等形的是()A.两个含30°角的直角三角形B.一个钝角相等的两个等腰三角形C.边长为5和6的两个等腰三角形D.腰对应相等的两个等腰直角三角形10、下列四个图形中,BE不是△ABC的高线的图是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、已知a,b,c是的三边长,满足,c为奇数,则______.2、如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=_____cm2.3、如图,在中,平分,于点E,若的面积为,则阴影部分的面积为________.4、如图,已知AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m.若P,Q两点同时出发,运动_____分钟后,△CAP与△PQB全等.5、如图,,,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为________.6、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD的面积是__________cm2.7、如图,△PBC的面积为5cm2,BP平分∠ABC,AP⊥BP于点P,则△ABC的面积为_____cm2.8、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按图中所示位置摆放,点D在边AB上,EFBC,则∠ADF的度数为_____度.9、在△ABC中,三边为、、,如果,,,那么的取值范围是_____.10、如图,在中,已知点,,分别为,,的中点,且,则阴影部分的面积______.三、解答题(6小题,每小题10分,共计60分)1、如图,在中,、分别是上的高和中线,,,求的长.2、如图所示,已知,请你添加一个条件,证明:.(1)你添加的条件是______;(2)请写出证明过程.3、如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD.求证:AE=FB.4、如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿堤岸走到电线杆B旁,接着再往前走相同的距离,到达C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点.小明测得C,D间的距离为90m,求在A点处小明与游艇的距离.5、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.6、如图,已知AB=AD,AC=AE,BC=DE,延长BC分别交边AD、DE于点F、G.(1)∠B与∠D相等吗?为什么?(2)若∠CAE=49°,求∠BGD的度数.-参考答案-一、单选题1、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.2、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,的面积为,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.3、B【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.4、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.5、B【分析】根据全等三角形的性质直接判定①②,则有,然后根据角的和差关系可判定③④.【详解】解:∵,∴,故①②正确;∵,∴,故③错误,④正确,综上所述:正确的有①②④;故选B.【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.6、A【分析】由“SAS”可证△BDF≌△CED,可得∠BFD=∠CDE,由外角的性质可求解.【详解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故选:A.【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定定理与性质是解题的关键.7、D【分析】分三种情况:C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:∵线段AB=9cm,AC=5cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=9−5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A,B,C不在一条直线上,9−5=4cm<BC<9+5=14cm,故线段BC可能为9cm,不可能为3cm,故③,④正确.故选D.【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键.8、C【分析】根据全等三角形的判定定理进行分析即可;【详解】根据已知条件可得,即,∵AC=DC,∴已知三角形一角和角的一边,根据全等条件可得:A.∠A=∠D,可根据ASA证明,A正确;B.BC=EC,可根据SAS证明,B正确;C.AB=DE,不能证明,C故错误;D.∠B=∠E,根据AAS证明,D正确;故选:C.【点睛】本题主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解题的关键.9、D【分析】根据两个三角形全等的条件依据三角形全等判定方法SSS,SAS,AAS,SAS,HL逐个判断得结论.【详解】解:A、两个含30°角的直角三角形,缺少对应边相等,故选项A不全等;B、一个钝角相等的两个等腰三角形.缺少对应边相等,故选项B不全等;C、腰为5底为6的三角形和腰为6底为5的三角形不全等,故选项C不全等;D、腰对应相等,顶角是直角的两个三角形满足“边角边”,故选项D是全等形.故选:D.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.10、C【分析】利用三角形的高的定义可得答案.【详解】解:BE不是△ABC的高线的图是C,故选:C.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.二、填空题1、7【分析】绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.【详解】解:,由三角形三边关系可得为奇数故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.2、5【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.3、6【分析】证点E为AD的中点,可得△ACE与△ACD的面积之比,同理可得△ABE和△ABD的面积之比,即可解答出.【详解】解:如图,平分,于点E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴阴影部分的面积为S△ACE+S△ABE=S△ABC=×12=6.故答案为6.【点睛】本题主要考查了全等三角形的判定与性质及三角形面积的等积变换,解题关键是明确三角形的中线将三角形分成面积相等的两部分.4、4【分析】根据题意CA⊥AB,DB⊥AB,则,则分或两种情况讨论,根据路程等于速度乘以时间求得的长,根据全等列出一元一次方程解方程求解即可【详解】解:CA⊥AB,DB⊥AB,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m,设运动时间为,且AC=4m,,当时则,即,解得当时,则,即,解得且不符合题意,故舍去综上所述即分钟后,△CAP与△PQB全等.故答案为:【点睛】本题考查了三角形全等的性质,根据全等的性质列出方程是解题的关键.5、2或6或2【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【详解】解:设BE=t,则BF=2t,AE=6-t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,综上所述,AG=2或AG=6.故答案为:2或6.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.6、30【分析】根据三角形的面积公式求出△ACD的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面积为(cm2),∵AD是BC边上的中线,∴△ACD的面积=△ABD的面积为(cm2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两部分解答.7、10【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S阴影=10(cm2),故答案为:10.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.8、75【分析】设CB与ED交点为G,依据平行线的性质,即可得到∠CGD的度数,再根据三角形外角的性质,得到∠BDE的度数,即可得∠ADF的度数.【详解】如图所示,设CB与ED交点为G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案为:75.【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.9、4<x<28【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;【详解】解:由题意得:解得:4<x<28.故答案为:4<x<28【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.10、【分析】根据三角形中线性质,平分三角形面积,先利用AD为△ABC中线可得S△ABD=S△ACD,根据E为AD中点,,根据BF为△BEC中线,即可.【详解】解:∵AD为△ABC中线∴S△ABD=S△ACD,又∵E为AD中点,故,∴,∵BF为△BEC中线,∴cm2.故答案为:1cm2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.三、解答题1、6cm【分析】先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.【详解】解:∵是边上的中线,∴是的中点,∴,∵,∴,∴=.【点睛】本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.2、(1);(2)见解析【分析】(1)此题是一道开放型的题目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;(2)根据全等三角形的判定定理AAS推出△ABD≌△ACD,再根据全等三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年度计算机四级题库检测试题打印含完整答案详解【网校专用】
- 个人歌唱活动策划与执行要点
- 物料能量衡算精要
- 酒店微笑问好服务培训纲要
- 2026届山东省曲阜市石门山镇中学九年级化学第一学期期中学业水平测试模拟试题含解析
- 2026届山东省德州市六校化学九上期末统考模拟试题含解析
- 2026届山东滨州阳信县九年级英语第一学期期末教学质量检测模拟试题含解析
- 2026届河南省驻马店九上化学期中预测试题含解析
- 河南省南阳市宛城区等2地2025-2026学年高二上学期开学英语试题(含答案)
- 2025年腔镜技能大赛试题及答案
- 小学语文 以学生为主体的课堂学习活动设计
- a-valediction-forbidding-mourning告别辞莫悲伤
- GB/T 2831-1981光学零件的面形偏差检验方法(光圈识别)
- GB/T 1094.1-2013电力变压器第1部分:总则
- 药品专业知识与技能培训
- 北京京剧院劳动合同制职工招考聘用模拟卷含答案
- 苏教版二下《折彩粽》教学设计
- 精选艾森克人格问卷测试成人版和少年版计分方式
- 《作用于肾上腺素受体的药物》精品PPT
- 《卫生政策学》第三章 政策问题确认
- 粉体合成与制备
评论
0/150
提交评论