




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江七台河勃利县7年级数学下册第四章三角形达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm2、如图,BD是△ABC的中线,AB=6,BC=4,△ABD和△BCD的周长差为()A.2 B.4 C.6 D.103、如图,,,,则下列结论:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④4、下列长度的三条线段能组成三角形的是()A.348 B.4410 C.5610 D.56115、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边6、下列各组图形中,是全等形的是()A.两个含30°角的直角三角形B.一个钝角相等的两个等腰三角形C.边长为5和6的两个等腰三角形D.腰对应相等的两个等腰直角三角形7、如图,点,,,在一条直线上,,,,,,则()A.4 B.5 C.6 D.78、如图,若MB=ND,∠MBA=∠NDC,下列条件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N9、如图,点,在线段上,与全等,其中点与点,点与点是对应顶点,与交于点,则等于()A. B. C. D.10、如图,D为∠BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、已知,如图,AB=AC,AD=AE,BE与CD相交于点P,则下列结论:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4对全等三角形;正确的是_____(请填写序号).2、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.3、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有:______.(填写序号,写出所有正确答案)4、如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=_____cm2.5、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.6、如图,△ABE≌△ACD,∠A=60°,∠B=20°,则∠DOE的度数为_____°.7、如图,△ABC≌△DEF,BE=a,BF=b,则CF=___.8、如图,已知,,,则______°.9、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.10、如图,在中,,点D,E在边BC上,,若,,则CE的长为______.三、解答题(6小题,每小题10分,共计60分)1、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.2、如图,点C、F在BE上,BF=EC,AB∥DE,且∠A=∠D,求证:AC=DF3、如图△ABC中,已知∠A=60°,角平分线BD、CE交于点O.(1)求∠BOC的度数;(2)判断线段BE、CD、BC长度之间有怎样的数量关系,请说明理由.4、如图,在△ABC中,D是边AB上一点,E是边AC的中点,过点C作交DE的延长线于点F.(1)求证:△ADE≌△CFE;(2)若AB=AC,CE=5,CF=7,求DB的长.5、如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD.求证:AE=FB.6、已知是的三边长.(1)若满足,,试判断的形状;(2)化简:-参考答案-一、单选题1、A【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解:所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.2、A【分析】根据题意可得,,△ABD和△BCD的周长差为线段的差,即可求解.【详解】解:根据题意可得,△ABD的周长为,△BCD的周长为△ABD和△BCD的周长差为故选:A【点睛】本题考查了三角形中线的性质及三角形周长的计算,熟练掌握三角形中线的性质是解答本题的关键.3、B【分析】根据全等三角形的性质直接判定①②,则有,然后根据角的和差关系可判定③④.【详解】解:∵,∴,故①②正确;∵,∴,故③错误,④正确,综上所述:正确的有①②④;故选B.【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.4、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.5、C【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.6、D【分析】根据两个三角形全等的条件依据三角形全等判定方法SSS,SAS,AAS,SAS,HL逐个判断得结论.【详解】解:A、两个含30°角的直角三角形,缺少对应边相等,故选项A不全等;B、一个钝角相等的两个等腰三角形.缺少对应边相等,故选项B不全等;C、腰为5底为6的三角形和腰为6底为5的三角形不全等,故选项C不全等;D、腰对应相等,顶角是直角的两个三角形满足“边角边”,故选项D是全等形.故选:D.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.7、A【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵,∴,∵,,∴,∴,∵,∴;故选A.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.8、A【分析】根据两个三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【详解】解:A、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A选项符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D选项不符合题意.故选:A.【点睛】本题重点考查了三角形全等的判定定理,两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.9、D【分析】根据点与点,点与点是对应顶点,得到,根据全等三角形的性质解答.【详解】解:与全等,点与点,点与点是对应顶点,,.故选:D【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的对应边相等,对应角相等是解题的关键.10、D【分析】利用AAS证明△CDE≌△BDF,可判断①④正确;再利用HL证明Rt△ADE≌Rt△ADF,可判断②正确;由∠BAC=∠EDF,∠FDE=∠BDC,可判断③正确.【详解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),故①正确;∴CE=BF,在Rt△ADE与Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.二、填空题1、①②④【分析】先证△AEB≌△ADC(SAS),再证△EPC≌△DPB(AAS),可判断①;可证△APC≌△APB(SSS),判定断②;利用特殊等腰三角形可得可判断③,根据全等三角形个数可判断④即可【详解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正确;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正确;当AP=PB时,∠PAB=∠B,当AP≠PB时,∠PAB≠∠B,故③不正确;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4对全等三角形,故④正确故答案为:①②④【点睛】本题考查三角形全等判定与性质,掌握全等三角形的判定方法与性质是解题关键.2、20【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.【详解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.3、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选,是边边角,不能得到形状和大小都确定的;②若选,是边角边,能得到形状和大小都确定的;③若选,是边边角,不能得到形状和大小都确定的;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.4、5【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.5、(答案不唯一)【分析】在与中,已经有条件:所以补充可以利用证明两个三角形全等.【详解】解:在与中,所以补充:故答案为:【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.6、100【分析】直接利用三角形的外角的性质得出∠CEO=80°,再利用全等三角形的性质得出答案.【详解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案为:100.【点睛】此题主要考查了全等三角形的性质以及三角形的外角的性质,求出∠CEO=80°是解题关键.7、##【分析】先利用线段和差求EF=BE﹣BF=a-b,根据全等三角形的性质BC=EF,再结合线段和差求出FC可得答案.【详解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案为:.【点睛】本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.8、59【分析】如图,过作证明证明再利用三角形的外角的性质求解从而可得答案.【详解】解:如图,过作,而,,故答案为:【点睛】本题考查的是平行线的性质,平行公理的应用,三角形的外角的性质,过作再证明是解本题的关键.9、110°【分析】延长BD交AC于点E,根据三角形的外角性质计算,得到答案.【详解】延长BD交AC于点E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,则∠BDC=∠DEC+∠C=110°,故答案为:110°.【点睛】本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.10、5【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案为5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.三、解答题1、见解析【分析】先由BF=CE说明BC=EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.【详解】证明:∵BF=CE,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴AC=DF.【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.2、见解析【分析】由BF=EC可得BC=EF,由可得,再结合∠A=∠D可证△≌△,最后根据全等三角形的性质即可证明结论.【详解】证明:∵已知,即,等式性质∵,两直线平行,内错角相等在△和△中,∴△≌△全等三角形对应边相等.【点睛】本题考查了平行线的性质、全等三角形的判定和性质等知识点.灵活运用全等三角形的判定定理成为解答本题的关键.3、(1)120°;(2)BC=BE+CD,理由见解析【分析】(1)利用角平分线的定义以及三角形内角和定理计算即可;(2)只要证明∠BOF=∠BOE=60°,可得∠COD=∠COF=60°即可证明.【详解】解:(1)在△ABC中,∠A=60°,BD和CE分别平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60°=120°.(2)BC=BE+CD.理由如下:在BC上截取BF=BE,连接OF,∵BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 35544-2025车用压缩氢气铝内胆碳纤维全缠绕气瓶
- DB53-T 1397-2025 洋桔梗切花生产技术规程
- 智能消防栓系统项目可行性研究报告
- 年产9900吨精密光机部件项目可行性研究报告
- 年产680套液氮泵车项目可行性研究报告
- 艺人经纪合同
- 防控知识技能培训表课件
- 游戏产业市场逐涨幅分析报告研究
- 腾阳矿业监理合同2篇
- 发起人股份合作协议书5篇
- 2024年福建省公务员录用考试《行测》真题及答案解析
- c02激光治疗皮肤病
- 占道施工安全培训
- 餐厅厨房装修改造工程施工组织设计方案
- 2024玻璃钢贮罐拆除解体施工合同
- 智能建造施工技术 课件 项目1 智能建造施工概论
- 2024年成人高考成考(高起专)语文试题与参考答案
- 门诊部成本控制与费用优化
- 幼儿园师德师风宣誓
- 2024-2030年中国病理检查市场专题研究及市场前景预测评估报告
- 第3章 即时定位与地图构建技术课件讲解
评论
0/150
提交评论