




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省凯里市中考数学真题分类(平行线的证明)汇编专项训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=32、将一副三角板()按如图所示方式摆放,使得,则等于()A. B. C. D.3、如图所示,下列推理及括号中所注明的推理依据错误的是(
)A.,(内错角相等,两直线平行)B.,(两直线平行,同旁内角互补)C.,(两直线平行,同旁内角互补)D.,(同位角相等,两直线平行)4、在△ABC中,如果∠A﹣∠B=90°,那么△ABC是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.斜三角形5、如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°6、如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°7、如图,与交于点,,则的度数为()A. B. C. D.8、将一个直角三角板和一把直尺按如图所示的方式摆放,若∠2=55°,则∠1的度数为(
)A.45° B.55° C.25° D.35°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图.有一个三角形纸片,,,将纸片一角折叠,使点落在外,若,则的大小为______.2、同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.3、如图,AB⊥BC于B,AB⊥AD于A,则∠C和∠D的关系是____.4、两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果___________,那么这两条直线平行.这个判定方法可简述为:_________,两直线平行.5、把“同角的余角相等”改成“如果…,那么…”:_________________________________.6、把“对顶角相等”改写成“如果…那么…”的形式____________________________________________.7、如图,四边形ABCD中,点M,N分别在AB,BC上,将沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___°.三、解答题(7小题,每小题10分,共计70分)1、如图,直线DE、FM,分别交的两边于N、G,P、Q,若吗?如果平行请说明理由.2、如图,已知∠A=50°,∠D=40°.(1)求∠1度数;(2)求∠A+∠B+∠C+∠D+∠E的度数.3、如图:∠1+∠2=180°,∠C=∠D,则∠A=∠F吗?请说明理由.4、用反证法证明:一个三角形中不能有两个角是直角.5、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴CD∥EF(,)∵∠A=∠2
∴()(,)∴AB∥CD∥EF(,)∴∠A=,∠C=,(,)∵∠AFE=∠EFC+∠AFC,∴=.6、如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.7、(1)在锐角中,边上的高所在直线和边上的高所在直线的交点为,,求的度数.(2)如图,和分别平分和,当点在直线上时,且B、P、D三点共线,,则_________.(3)在(2)的基础上,当点在直线外时,如下图:,,求的度数.-参考答案-一、单选题1、B【解析】【详解】试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.2、A【解析】【分析】根据平行线的性质和三角形外角的性质进行计算,即可得到答案.【详解】解:,.,.故选.【考点】本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质.3、C【解析】【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:.,(内错角相等,两直线平行),正确;.,(两直线平行,同旁内角互补),正确;.,(两直线平行,同旁内角互补),故选项错误;.,(同位角相等,两直线平行),正确;故选:C.【考点】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.4、B【解析】【分析】因为∠A﹣∠B=90°,即∠A=90°+∠B,那么∠A一定大于90°,即为钝角三角形.【详解】解:在△ABC中,∵∠A﹣∠B=90°,∴∠A=90°+∠B>90°(∠B肯定大于0º),那么△ABC是钝角三角形.故选:B.【考点】此题考查了三角形内角和定理,解题的关键是得到∠A一定大于90°.5、D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.6、C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故选C.【考点】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.7、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得.【详解】故选:A.【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键.8、D【解析】【分析】先对图形标注,再根据平行线的性质得∠1=∠4,然后根据直角三角形两个锐角互余及对顶角相等得出答案.【详解】如图,∵,∴∠1=∠4(两直线平行,内错角相等).∵∠2=∠3(对顶角相等),∴∠1+∠2=∠3+∠4=90°,∴∠1=90°﹣∠2=35°.故选:D.【考点】本题考查平行线的性质及三角形内角和定理,灵活得选择平行线的性质是解题的关键.二、填空题1、【解析】【分析】先根据三角形的内角和定理可出;再根据折叠的性质得到,再利用三角形的内角和定理以及外角性质得,,即可得到,然后利用平角的定义即可求出.【详解】解:如图,,,∴;又将三角形纸片的一角折叠,使点落在外,∴而,,,,,.故答案为:【考点】本题考查了折叠的性质,三角形的内角和定理以及外角性质,解题的关键是明确折叠前后两图形全等.2、
∥;
∥;
⊥【解析】【详解】①∵a⊥b,b⊥c,∴a//c(垂直同一条直线的两直线互相平行)②a∥b,b∥c,∴a//c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)③如图所示:∵a∥b,∴∠1=∠2,又∵b⊥c,∴∠2=90°,∴∠1=∠2=90°,即a⊥c.故答案是://,//,⊥.3、互补【解析】【详解】因为AB⊥BC,AB⊥AD,所以,所以AD//BC,所以,即∠C和∠D的关系是互补.故答案:互补.4、
同位角相等(答案不唯一)
同位角相等(答案不唯一)【解析】【分析】根据平行线的判定定理解答即可.【详解】两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法可简述为:同位角相等,两直线平行.故答案为:同位角相等,同位角相等.【考点】本题主要考查平行线的判定定理,属于基础题,熟练掌握平行线的判定定理是解题关键.5、如果两个角是同一个角的余角,那么这两个角相等【解析】【详解】根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”故答案为:如果两个角是同一个角的余角,那么这两个角相等.【考点】本题考查了命题的特点,解题的关键是“如果”后面接题设,“那么”后面接结论.6、如果两个角是对顶角,那么它们相等【解析】【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:如果两个角是对顶角,那么它们相等.【考点】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.7、95【解析】【详解】∵MF//AD,FN//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案为:95三、解答题1、平行【解析】【分析】由邻补角关系得出∠BPQ=115°,得出∠BPQ=∠BNG,由同位角相等即可得出结论.【详解】平行,因为,所以,所以根据“同位角相等,两直线平行”可得.【考点】本题考查了平行线的判定方法、邻补角关系;熟记同位角相等,两直线平行,证出∠BPQ=∠BNG是解决问题的关键.2、(1)(2)【解析】【分析】(1)根据三角形的外角的性质即可得到结论;(2)设∠1的同旁内角为∠2,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.(1)∠1=∠A+∠D=90°;,(2)设∠1的同旁内角为∠2,如图,∵∠1=∠A+∠D,∠2=∠B+∠E,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【考点】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.3、∠A=∠F,理由见解析【解析】【分析】∠1+∠2=180°,∠2=∠AGC,∠1+∠AGC=180°,BD∥CE,有∠C=∠ABD=∠D,得DF∥AC,进而可说明∠A=∠F.【详解】解:∠A=∠F,理由如下:∵∠1+∠2=180°,∠2=∠AGC∴∠1+∠AGC=180°∴BD∥CE∴∠C=∠ABD∵∠C=∠D∴∠D=∠ABD∴DF∥AC∴∠A=∠F.【考点】本题考查了对顶角,平行线的判定与性质.解题的关键在利用角的数量关系证明直线平行.4、见解析.【解析】【分析】假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,由此即可证明.【详解】证明:假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,所以一个三角形中不能有两个直角.【考点】本题主要考查了反证法,解题的关键在于能够熟练掌握反证法的步骤.5、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【解析】【分析】根据同旁内角互补,两直线平行可得CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE
,∠C=∠EFC,根据角的和可得∠AFE=∠EFC+∠AFC即可.【详解】证明:∵∠1+∠AFE=180°∴CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2,∴(AB∥CD)(同位角相等,两直线平行),∴AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴∠A=∠AFE,∠C=∠EFC,(两直线平行,内错角相等)∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC.故答案为:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【考点】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.6、见解析【解析】【分析】根据条件证明△ABC≌△DEF即可得解;【详解】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.【考点】本题主要考查了三角形全等的判定与性质,结合平行线的性质求解是解题的关键.7、(1);(2);(3).【解析】【分析】(1)根据对顶角相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语谱图课件原理
- 语言区游戏理论知识培训课件
- 2025咨询合同-泄露后果
- 2025企业合作协议协议范本
- 2025员工派遣协议方案借调合同
- 2025房产按揭贷款购买合同
- 团队绩效评估体系评分标准模板
- 互联网技术咨询服务合作合同
- 合作社农田种植项目协议
- 2025年智能制造行业补贴资金申请策略与案例分析报告
- 经济学基础课件 项目三 支付结算法律制度
- 城市低空安全监管平台解决方案
- 员工入职申请表(完整版)
- 销售述职竞聘报告
- 超市安全知识培训内容
- 银行招聘职业能力测验-2025中国银行春招笔试考题
- 630KVA箱变安装工程施工设计方案
- DBJ51T 195-2022 四川省纵向增强体心墙土石坝技术规程
- 农家乐大学生创业计划书
- 《马克思生平故事》课件
- 主动脉夹层临床医学专业教学系列课件讲解
评论
0/150
提交评论