考点解析北师大版9年级数学上册期末试卷(精练)附答案详解_第1页
考点解析北师大版9年级数学上册期末试卷(精练)附答案详解_第2页
考点解析北师大版9年级数学上册期末试卷(精练)附答案详解_第3页
考点解析北师大版9年级数学上册期末试卷(精练)附答案详解_第4页
考点解析北师大版9年级数学上册期末试卷(精练)附答案详解_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、直角三角形的面积为,斜边上的中线为,则这个三角形周长为(

)A. B.C. D.2、对于反比例函数y=﹣,下列说法错误的是()A.图象经过点(1,﹣5)B.图象位于第二、第四象限C.当x<0时,y随x的增大而减小D.当x>0时,y随x的增大而增大3、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接DG,将△AGD绕点A逆时针旋转60°得到△AEF,则BF的长为(

)A. B.2 C. D.24、关于x的一元二次方程根的情况,下列说法正确的是(

)A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定5、已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中错误的有(

)A.1个 B.2个 C.3个 D.4个6、距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()A.7人 B.6人 C.5人 D.4人二、多选题(6小题,每小题2分,共计12分)1、如图,在矩形ABCD中,对角线AC、BD相交于G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形中相似的为()A.△BEA与△ACD B.△FED与△DEB C.△CFD与△ABG D.△ADF与△EFD2、下列多边形中,一定不相似的是(

)A.两个矩形 B.两个菱形 C.两个正方形 D.两个平行四边形3、某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则不符合这一结果的实验是(

)A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是44、如图所示是△ABC位似图形的几种画法,正确的是()A. B.C. D.5、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的为(

)A.① B.② C.③ D.④6、下列说法正确的是(

).A.对角线相等的菱形是正方形B.顺次连接对角线互相垂直的四边形的四边中点,所得到的四边形是菱形C.成轴对称的两个图形全等D.有三个角相等的四边形是矩形第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、图1是一种手机托架,使用该手机托架示意图如图3所示,底部放置手机处宽AB1.2厘米,托架斜面长BD6厘米,它有C到F共4个档位调节角度,相邻两个档位间的距离为0.8厘米,档位C到B的距离为2.4厘米.将某型号手机置于托架上(图2),手机屏幕长AG是15厘米,O是支点且OBOE2.5厘米(支架的厚度忽略不计).当支架调到E档时,点G离水平面的距离GH为__________cm.2、如图,小明用相似图形的知识测量旗杆高度,已知小明的眼睛离地面1.5米,他将3米长的标杆竖直放置在身前3米处,此时小明的眼睛、标杆的顶端、旗杆的顶端在一条直线上,通过计算测得旗杆高度为15米,则旗杆和标杆之间距离CE长___________米.3、若m,n是关于x的方程x2-3x-3=0的两根,则代数式m2+n2-2mn=_____.4、如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为_______.5、如图,点E、F分别是矩形ABCD边BC和CD上的点,把△CEF沿直线EF折叠得到△GEF,再把△BEG沿直线BG折叠,点E的对应点H恰好落在对角线BD上,若此时F、G、H三点在同一条直线上,且线段HF与HD也恰好关于某条直线对称,则的值为______.6、两个任意大小的正方形,都可以适当剪开,拼成一个较大的正方形,如用两个边长分别为,的正方形拼成一个大正方形.图中的斜边的长等于________(用,的代数式表示).7、已知一元二次方程ax2+bx+c=0(a≠0),下列结论:①若方程两根为-1和2,则2a+c=0;②若b>a+c,则方程有两个不相等的实数根;③若b=2a+3c,则方程有两个不相等的实数根;④若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立.其中结论正确的序号是__________.8、如图,将矩形的四个角向内折起,恰好拼成一个无缝隙重叠的四边形,若,,则边的长是____.四、解答题(6小题,每小题10分,共计60分)1、已知,且,求x,y的值.2、如图所示,直线y=x+2与坐标轴交于A、B两点,与反比例函数y=(x>0)交于点C,已知AC=2AB.(1)求反比例函数解析式;(2)若在点C的右侧有一平行于y轴的直线,分别交一次函数图象与反比例函数图象于D、E两点,若CD=CE,求点D坐标.3、如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形,连接CF、DF.设.(当点E与点B重合时,x的值为0),.小明根据学习函数的经验,对函数随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.4、已知反比例函数y=(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?5、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).6、已知,是一元二次方程的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由.-参考答案-一、单选题1、D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.【详解】解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长为2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴,则2xy=4S,即(x+y)2=4d2+4S,∴∴这个三角形周长为:,故选D.【考点】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.2、C【解析】【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:反比例函数y=﹣,A、当x=1时,y=﹣=﹣5,图像经过点(1,-5),故选项A不符合题意;B、∵k=﹣5<0,故该函数图象位于第二、四象限,故选项B不符合题意;C、当x<0时,y随x的增大而增大,故选项C符合题意;D、当x>0时,y随x的增大而增大,故选项D不符合题意;故选C.【考点】本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.3、A【解析】【分析】过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,△AGD绕点A逆时针旋转60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四边形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,FH=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A逆时针旋转60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,FH=AF=1由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB=2由勾股定理得BF=故BF的长.故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.4、A【解析】【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【详解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【考点】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解:四边形是平行四边形,A、当时,它是菱形,选项不符合题意,B、当时,它是菱形,选项不符合题意,C、当时,它是矩形,选项不符合题意,D、当时,它是矩形,不一定是正方形,选项符合题意,故选:.【考点】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6、B【解析】【分析】设小组有x人,根据题意,得x(x-1)=30,解方程即可.【详解】设小组有x人,根据题意,得x(x-1)=30,整理,得,解方程,得(舍去),故选B.【考点】本题考查了一元二次方程的应用,熟练掌握方程的应用是解题的关键.二、多选题1、ABCD【解析】【分析】根据判定三角形相似的条件对选项逐一进行判断.【详解】解:根据题意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴△BEA∽△ACD;∵∠AEB=∠FEA,∠AFE=∠EAB=90°,∴△AFE∽△BAE,∴,又∵AE=ED,∴而∠BED=∠BED,∴△FED∽△DEB;∵ABCD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG;∵△FED∽△DEB,∴∠EFD=∠EDB,∵AG=DG,∴∠DAF=∠ADG,∴∠DAF=∠EFD,∴△ADF∽△EFD.故选:ABCD.【考点】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2、ABD【解析】【分析】利用相似多边形的对应边的比相等,对应角相等分析.【详解】解:要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,选项A、B、D符合题意;而两个正方形,对应角都是90°,对应边的比也都相等,故一定相似,选项C不符合题意.故选:ABD.【考点】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.3、ABC【解析】【分析】根据统计图可知,实验结果在附近波动,即其概率,计算四个选项的概率,约为者符合实验结果.【详解】解:A、在“石头、剪刀、布”的游戏中,小明随机出“剪刀”的概率为,故不符合实验结果,符合题意;B、一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为;故不符合实验结果,符合题意;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故不符合实验结果,符合题意;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为:故符合实验结果,不符合题意;故选:ABC.【考点】本题考查了利用频率估算概率以及概率公式的简单应用,大量反复试验下频率稳定值即为概率,用到的知识点为:频率=所求情况数与总情况数之比.4、ABCD【解析】【分析】利用位似图形的画法:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.【详解】解:第一个图形中的位似中心为A点,第二个图形中的位似中心为BC上的一点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:ABCD.【考点】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.5、BC【解析】【分析】根据相似三角形的定义,已知条件判定相似的三角形,再利用相似三角形的性质逐一判断选项即可.【详解】解:在正方形中,是的中点,是上一点,且,,..,.,,,..,.②③正确.故选:BC.【考点】本题考查了相似三角形的判定与性质,解题的关键是掌握判定定理有①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.6、AC【解析】【分析】根据正方形,矩形的判定,成轴对称图形的关系,对各选项进行判断即可;【详解】解:对角线相等的菱形是正方形,正确,符合题意;B顺次连接对角线互相垂直的四边形的四边中点,所得到的四边形是矩形,故原命题错误,不符合题意;C成轴对称的两个图形全等,正确,符合题意;D有四个角相等的四边形是矩形,错误,不符合题意.故答案为:A、C.【考点】本题考查了正方形,矩形的判定,成轴对称图形的关系.解题的关键在于对知识的灵活运用.三、填空题1、【解析】【分析】如图3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性质求出DT,BT,AD,即可求出GH的长.【详解】如图3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案为:.【考点】本题考查了相似三角形的应用,勾股定理的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.2、24【解析】【分析】如图,延长交的延长线于,设米,米.利用相似三角形是性质分别求出,即可.【详解】解:如图,延长交的延长线于,设米,米.由题意,米,米,米.,,,,解得,经检验是分式方程的解,,,,,,经检验是分式方程的解,(米,故答案为:24.【考点】本题考查相似三角形的判定和性质,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.3、21【解析】【分析】先根据根与系数的关系得到m+n=3,mn=﹣3,再根据完全平方公式变形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整体代入的方法计算.【详解】解:∵m,n是关于x的方程x2-3x-3=0的两根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案为:21.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.4、38【解析】【分析】根据题目要求,要使四边形AGCD的面积最小,因为的面积固定,只需使的面积最小即可,即的高最小即可,又在中,,则BG=2,高的最小值为点B到AC的距离减去BG的长度,则可求解.【详解】依题意,在中,为EF的中点,,,点G在以B为圆心,2为半径的圆与长方形重合的弧上运动,,要使四边形AGCD的面积最小,则B所在直线垂直线段AC,又,点B到AC的距离为,此时点G到AC的距离为,故的最小面积为,,故答案为:38.【考点】本题考查了动点问题中四边形的最小面积问题,利用勾股定理,直角三角形中线的性质,三角形等积法求高等性质定理进行求解,对于相关性质定理的熟练运用是解题的关键.5、【解析】【分析】根据线段HF与HD也恰好关于某条直线对称,可得HF=HD,由折叠和同角的余角相等得,然后证明,再利用设元法即可解决问题.【详解】解:∵线段HF与HD也恰好关于某条直线对称,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折叠可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等边三角形,∴∠CBD=∠CEF=30°,∴,设GF=CF=x,HF=DF=y,则HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考点】本题主要考查折叠的性质、轴对称的性质、相似三角形的判定与性质.解决本题的关键是掌握翻折的性质.6、【解析】【分析】根据题意及勾股定理可得BC2=;又因Rt△ABC的边BC在斜边AB上的射影为a,根据射影定理可得BC2=a•AB,由此即可解答.【详解】根据题意及勾股定理可得:BC2=;由题意可得:Rt△ABC的边BC在斜边AB上的射影为a,∴BC2=a•AB,即可得AB=.故答案为.【考点】本题考查射影定理的知识,注意掌握每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.7、①③④【解析】【分析】利用根与系数的关系判断①;由Δ=b2-4ac判断②;由判别式可判断③;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断④.【详解】解:若方程两根为-1和2,则=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正确;由b>a+c不能判断Δ=b2-4ac值的大小情况,故②错误;若b=2a+3c,则Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正确;故答案为:①③④.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系及根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.8、【解析】【分析】由折叠的性质和矩形的性质可得∠HEF=90°,EA=EB=3,证明△HNG≌△FME,求出HF,设AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【详解】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,由折叠可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,FB=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四边形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,设AH=x,则HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案为:.【考点】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,利用勾股定理列出方程是本题的关键.四、解答题1、x=6,y=10【解析】【分析】设,则x=3k,y=5k,z=6k,由可求得k的值,从而可求得x与y的值.【详解】设,则x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分别为6、10【考点】本题考查了比例的性质,若几个比相等,即,常常设其比值为k,则有a=kb,c=kd,e=kf,再根据题目条件解答则更简便.2、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y轴于M,如图,利用直线解析式确定A(0,2),B(﹣2,0),再根据平行线分线段成比例定理求出MC=4,AM=4,则C(4,6),然后把C点坐标代入y=中求出k得到反比例函数解析式;(2)MC交直线DE于N,如图,证明△CND为等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,设CN=t,则N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D点坐标.【详解】解:(1)作CM⊥y轴于M,如图,当x=0时,y=x+2=2,则A(0,2),当y=0时,x+2=0,解得x=﹣2,则B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函数解析式为y=;(2)MC交直线DE于N,如图,∵MC=MA,∴△MAC为等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND为等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,设CN=t,则N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考点】本题是反比例函数与一次函数的综合题,涉及到待定系数法求函数解析式、平行线分线段成比例定理、等腰三角形的性质,有一定的难度3、(1)见解析;(2)见解析;(3)2.59.【解析】【分析】(1)画图、测量可得;(2)依据表中的数据,描点、连线即可得;(3)由题意得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论