




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版7年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、是下列()方程的解.A. B. C. D.2、如图,于点,于点,于点,下列关于高的说法错误的是()A.在中,是边上的高 B.在中,是边上的高C.在中,是边上的高 D.在中,是边上的高3、有下列方程组:①;②;③;④;⑤,其中二元一次方程组有()A.1个 B.2个 C.3个 D.4个4、下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-24<4C.<2 D.4x-3<2y-75、将正整数1至6000按一定规律排列如右表:同时平移表中带阴影的方框,方框中三个数的和可能是()A.116 B.117 C.129 D.1386、如图给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,这三个数的和不可能是()A.69 B.54 C.27 D.407、第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是参选的冬奥会会徽设计的部分图形,其中是轴对称图形的是()A. B. C. D.8、若,则不等式组的解集是()A. B. C. D.无解第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、成成和昊昊分别解答完成了20道数学试题,若答对了一题可以加上一个两位数的分数,答错了一题则要减去另一个两位数的分数,最终,成成得了333分,昊昊得了46分,那么,答错一题时应减去的分数为______分.2、含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做___________.3、列一元一次不等式解应用题的基本步骤:(1)_________:认真审题,分清已知量、未知量;(2)_________:设出适当的未知数;(3)_________:要抓住题中的关键词,如“大于”“小于”“不大于”“不小于”“不超过”“超过”“至少”等.(4)_________:根据题中的不等关系列出不等式;(5)_________:解所列的不等式;(6)答:检验是否符合题意,写出答案4、已知不等式组,则它的正整数解是__.5、2x-y=3用含x的式子表示y,得____________;用含y的式子表示x,得____________.6、已知的三个内角的度数之比::::,则______度,______度.7、在不等式组的解集中,最大的整数解是______.三、解答题(7小题,每小题10分,共计70分)1、观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积三个角上三个数的和积与和的商(2)请用你发现的规律求出图④中的数y和图⑤中的数x.2、解不等式:,并把它的解集在数轴上表示出来.3、某演出票价为110元/人,若购买团体票有如下优惠:购票人数不超过50人的部分超过50人,但不超过100人的部分超过100人的部分优惠方案无优惠每线票价优惠20%每线票价优惠50%例如:200人作为一个团体购票,则需要支付票款元.甲、乙两个班全体学生准备去观看该演出,如果两个班作为一个团体去购票,则应付票款10065元.请列方程解决下列问题:(1)已知两个班总人数超过100人,求两个班总人数;(2)在(1)条件下,若甲班人数多于50人.乙班人数不足50人,但至少25人,如果两个班单独购票,一共应付票款11242元.求甲、乙两班分别有多少人?4、已知,点,是数轴上不重合的两个点,且点在点的左边,点是线段的中点.点A,B,M分别表示数a,b,x.请回答下列问题.(1)若a=-1,b=3,则点A,B之间的距离为;(2)如图,点A,B之间的距离用含,的代数式表示为x=,利用数轴思考x的值,x=(用含,的代数式表示,结果需合并同类项);(3)点C,D分别表示数c,d.点C,D的中点也为点M,找到之间的数量关系,并用这种关系解决问题(提示:思考x的不同表示方法,找相等关系).①若a=-2,b=6,c=则d=;②若存在有理数t,满足b=2t+1,d=3t-1,且a=3,c=-2,则t=;③若A,B,C,D四点表示的数分别为-8,10,-1,3.点A以每秒4个单位长度的速度向右运动,点B以每秒3个单位长度的速度向左运动,点C以每秒2个单位长度的速度向右运动,点D以每秒3个单位长度的速度向左运动,若t秒后以这四个点为端点的两条线段中点相同,则t=.5、【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴发现:如图所示的数轴上,点O为原点,点A、B表示的数分别是a和b,点B在点A的右边(即),则A、B两点之间的距离(即线段的长).【问题情境】如图所示,数轴上点A表示的数,点B表示的数为,线段的中点C表示的数为x.点M从点A出发,以每秒2个单位长度的速度沿数轴向右运动;同时点N从点B出发,以每秒3个单位的速度沿数轴向左运动.设运动时间为t秒.【综合运用】根据“背景知识”和“问题情境”解答下列问题:(1)填空:①A、B两点之间的距离_______,线段的中点C表示的数_______.②用含t的代数式表示:t秒后,点M表示的数为________;点N表示的数为______.(2)求当t为何值时,点M运动到线段的中点C,并求出此时点N所表示的数.(3)求当t为何值时,.6、渔场计划购买甲、乙两种鱼苗共4000尾,甲种鱼苗每尾0.6元,乙种鱼苗每尾0.8元.(1)若购买这批鱼苗共用了2900元,甲乙两种鱼苗分别购买了多少尾?(2)若要使这批鱼苗的费用不超过3000元,那么应至少购买多少尾甲种鱼苗?7、已知,.(1)求;(2)如果,那么C的表达式是什么?(3)在(2)的条件下,若是方程的解,求m的值.-参考答案-一、单选题1、C【解析】【分析】把分别代入每个每个方程的左右两边验证即可.【详解】解:A.当时,左=,右=6,故不符合题意;B.当时,左=,右=1,故不符合题意;C.当时,左=,右=2,故符合题意;D.当时,左=,右=1-2=-1,故不符合题意;故选C.【点睛】本题考查了一元一次方程的解,熟练掌握解的定义是解答本题的关键,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2、C【解析】【详解】解:A、在中,是边上的高,该说法正确,故本选项不符合题意;B、在中,是边上的高,该说法正确,故本选项不符合题意;C、在中,不是边上的高,该说法错误,故本选项符合题意;D、在中,是边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.3、B【解析】略4、B【解析】略5、A【解析】【分析】设最左边数为x,则另外两个数分别为x+2、x+9,进而可得出三个数之和为3x+11,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第七列及第八列数,即可得到答案.【详解】解:设最左边数为x,则另外两个数分别为x+2、x+9,∴三个数之和为x+x+2+x+9=3x+11.根据题意得:3x+11=116,3x+11=117,3x+11=129,3x+11=138,解得:x=35,x=(舍去),x=(舍去),x=(舍去),故选:A.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.6、D【解析】【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,因而这三个数的和一定是3的倍数.【详解】解:设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是(x-7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则,这三个数的和不可能是40.故选:D.【点睛】考查了一元一次方程的应用.本题解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.7、B【解析】【分析】根据轴对称图形的定义逐项分析判断即可.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合【详解】解:A.不是轴对称图形,故不符合题意;B.是轴对称图形,故符合题意;C.不是轴对称图形,故不符合题意;D.不是轴对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的性质是解题的关键.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.8、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若,则不等式组的解集是无解.故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题1、10【解析】【分析】设成成答对了道,昊昊答对了道,答对了一题加上的分数为分,答错一题时应减去的分数为,根据题意列出方程组即可求解,进而根据确定,根据整除,可得或,进而即可求得,代入即可求得的值.【详解】设成成答对了道,昊昊答对了道,答对了一题加上的分数为a分,答错一题时应减去的分数,根据题意,得①-②得:代入②得都是整数,则也是整数,且个位数为0,则或当时,,当时,,不符合题意,故答案为:【点睛】本题考查了二元一次方程组的应用,整除,根据题意列出方程组是解题的关键.2、三元一次方程组【解析】略3、审题设未知数找出题中的不等量关系列不等式解不等式【解析】略4、1,2【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】,由①得:,由②得:,则不等式组的解集为,不等式组的正整数解是1,2;故答案为:1,2.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.5、y=2x-3【解析】略6、60100【解析】【分析】设一份为,则三个内角的度数分别为,,,再利用内角和定理列方程,再解方程可得答案.【详解】解:设一份为,则三个内角的度数分别为,,.则,解得.所以,,即,.故答案为:【点睛】本题考查的是三角形的内角和定理的应用,利用三角形的内角和定理构建方程是解本题的关键.7、4【解析】【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.【详解】解:,解不等式①得,x≥2,解不等式②得,,∴不等式组的解集为,∴不等式组的最大整数解为4.故答案为:4.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.三、解答题1、(1)(-2)×(-5)×(17)=170;(-2)+(-5)+(17)=10;-60÷(-12)=5;170÷10=17(2)y=-30,x=-2【解析】【分析】(1)根据题意和有理数的运算法则求解即可;(2)图④:先计算出三个数的积与和,然后算出积与和的商即可得到y的值;图5:先计算出三个数的积与和,然后算出积与和的商即可得到-3(4+x)=3x,由此求解即可.(1)解:填表如下所示:图①图②图③三个角上三个数的积三个角上三个数的和积与和的商(2)解:由题意得:图④:5×(-8)×(-9)=360,5+(-8)+(-9)=-12,360÷(-12)=-30,∴y=-30;图⑤:1×x×3=3x,1+x+3=4+x∴-3(4+x)=3x,∴x=-2.【点睛】本题主要考查了有理数乘除法的运算,有理数加法运算,解一元一次方程,正确理解题意是解题的关键.2、,数轴见解析【解析】【分析】先去分母,再去括号,移项、合并同类项,把的系数化为1.【详解】解:去分母得,,去括号得,,移项、合并同类项得,,把的系数化为1得,.在数轴上表示此不等式的解集如下:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.3、(1)人(2)甲班有人,乙班有人.【解析】【分析】(1)设两个班总人数为人,再根据各段费用之和为10065元,列方程,再解方程即可;(2)设乙班有人,则甲班有人,当时,则再列方程再解方程可得答案.(1)解:设两个班总人数为人,则整理得:解得:答:两个班总人数为人.(2)解:设乙班有人,则甲班有人,当时,则整理得:解得:答:甲班有人,乙班有人.【点睛】本题考查的是一元一次方程的应用,最优化选择问题,分段计费问题,理解题意,确定相等关系列方程是解本题的关键.4、(1)4(2),(3)①;②;③0或或7【解析】【分析】(1)由图易得A、B之间的距离;(2)A、B之间的距离为两点表示的数差的绝对值;由数轴得点M表示的数x为,从而可求得x;(3)①由(2)得:,其中a、b、c的值已知,则可求得d的值;②由可得关于t的方程,解方程即可求得t;③分三种情况考虑:若线段与线段共中点;若线段与线段共中点;若线段与线段共中点;利用(2)的结论即可解决.(1)AB=3+1=4故答案为:4(2);由数轴知:故答案为:,(3)①由(2)可得:即解得:故答案为:②由,得解得:故答案为:7③由题意运动t秒后.分三种情况:若线段与线段共中点,则,解得;若线段与线段共中点,则,解得;若线段与线段共中点,则,解得.综上所述,故答案为:0或或7【点睛】本题考查了数轴上两点间的距离,数轴上线段中点表示的数,解一元一次方程等知识,灵活运用这些知识是关键,注意数形结合.5、(1)①10,-1.②2t-6;4-3t;(2);;(3)t=1或t=3.【解析】【分析】(1)①根据公式,代入计算即可.②根据距离公式,变形表示即可;(2)准确表示点M表示的数,点N表示的数,点C表示的数为-1,列式计算即可;(3)根据距离公式,化成绝对值问题求解即可.(1)①∵数轴上点A表示的数,点B表示的数为,∴AB=|-6-4|=10;∵线段的中点C表示的数为x,∴4-x=x+6,解得x=-1,故答案为:10,-1.②根据题意,得M的运动单位为2t个,N的运动单位为3t个,∵数轴上点A表示的数,点B表示的数为,∴点M表示的数为2t-6;点N表示的数为4-3t.故答案为:2t-6;4-3t.(2)∵点M表示的数为2t-6,且点C表示的数为-1,∴2t-6=-1,解得t=;此时,点N表示的数为4-3t=4-=.(3)∵点M表示的数为2t-6;点N表示的数为4-3t,∴MN=|2t-6-4+3t|=5|t-2|,∵,AB=10,∴5|t-2|=5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业合理化建议征集与采纳实施服务合同
- 离婚协议书范本:共同财产虚拟货币分割及监管协议
- 公务员遴选考试咨询服务协议
- 仪器设备维护方案
- 心理学中的幸福感提升方法
- 羽绒服装生产工艺指南
- 交通物流信息采集规范
- 2025中信银行成都分行运营管理部社会招聘笔试参考题库附答案解析
- 农业科技成果评价与考核
- 2025云南昭通职业学院招聘城镇公益性岗位工作人员5人笔试备考试题及答案解析
- 2025年江苏省档案职称考试(新时代档案工作理论与实践)历年参考题库含答案详解(5套)
- 肥胖症诊疗指南(2024年版)解读
- 《焊接结构生产》课件-第一单元 焊接结构生产基础知识
- 基于西门子PLC的声控喷泉系统设计
- 烟草局联合快递企业开展涉烟寄递违法行为培训
- 污水处理厂处理设施设备更新改造工程项目可行性研究报告(参考模板)
- 中国象棋基础教学课件
- 机制砂石骨料工厂设计规范2025年
- 股癣护理课件
- 土方开挖培训课件
- 变电运维培训课件
评论
0/150
提交评论