




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()A. B. C. D.2、下列四个图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个4、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()A.个 B.个 C.个 D.个5、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个6、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于()A. B. C. D.7、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()A.3 B. C. D.8、下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、在菱形ABCD中,AB=6,E为AB的中点,连结AC,DE交于点F,连结BF.记∠ABC=α(0°<α<180°).(1)当α=60°时,则AF的长是_____;(2)当α在变化过程中,BF的取值范围是_____.2、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.3、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.4、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.5、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.6、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.7、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.三、解答题(7小题,每小题0分,共计0分)1、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AD=6,求线段AE的长.2、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).3、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC.作AELOB于E、AF⊥OC于F.∴、(依据是①)∵,∴(依据是②).∵,.∴BC是的直径(依据是③).∴∵,∴A的坐标为(④)的半径为⑤4、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;(3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.5、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.(1)求的度数;(2)若,且,求DF的长.6、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.7、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.(1)求证:直线CD是⊙O的切线;(2)若,,求OC的长.-参考答案-一、单选题1、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.2、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.4、D【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,故选D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点D是AB的中点,,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.7、A【分析】分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.【详解】解:连接BO,并延长交⊙O于D,连结DC,∵∠A=30°,∴∠D=∠A=30°,∵BD为直径,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故选A.【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.8、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题1、2【分析】(1)证明是等边三角形,,进而即可求得;(2)过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上,进而即可求得范围.【详解】(1)如图,四边形是菱形,是等边三角形是的中点即故答案为:2(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,四边形是菱形,在以为圆心长度为半径的圆上,又∠ABC=α(0°<α<180°)在半圆上,最小值为最大值为故答案为:【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键.2、【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.3、【分析】阴影部分的面积等于等边三角形的面积减去三个扇形面积,而这三个扇形拼起来正好是一个半径为半圆的面积,即阴影部分面积=等边三角形面积−半径为半圆的面积,因此求出半圆面积,连接AD,则可求得AD的长,从而可求得等边三角形的面积,即可求得阴影部分的面积.【详解】连接AD,如图所示则AD⊥BC∵D点是BC的中点∴由勾股定理得∴∵S半圆=∴S阴影=S△ABC−S半圆故答案为:【点睛】本题是求组合图形的面积,扇形面积及三角形面积的计算.关键是把不规则图形面积通过割补转化为规则图形的面积计算.4、5【分析】设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【详解】解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半径长为5,故答案为:5.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.5、【分析】如图,取的中点,连接,,,证明,进而证明在上运动,且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.【详解】解:如图,取的中点,连接,,,将线段MN绕点M顺时针旋转60°得到线段MQ,,是等边三角形,,是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.6、60【分析】根据弧长公式求解即可.【详解】解:,解得,,故答案为:60.【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.7、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.三、解答题1、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;(2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OC,∵CE是⊙O的切线,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:过点A作AF⊥EC交EC于点F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四边形OAFC是矩形,∵OA=OC,∴四边形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.2、(1)8(2)(3)或.【分析】(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解.(1)如图2,过点O作OH⊥AC于点H,由垂径定理得:AH=CH=AC,在Rt△OAH中,,∴设OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,∵∠DEO=∠AEC,∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,∴当△DOE与△AEC相似时,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,综上所述:AD的长是或【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.3、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答.【详解】解:如图2,连接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依据是垂径定理)∵,∴(依据是圆周角定理).∵,.∴BC是的直径(依据是圆周角定理).∴,∵,∴A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.4、(1)B和C;(2);(3)【分析】(1)根据图形可确定与点A组成的“成对关联点”的点;(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.【详解】(1)如图所示:在点B,C,D中,与点A组成的“成对关联点”的点是B和C,故答案为:B和C;(2)∵∴在直线上,∵点F与点E关于x轴对称,∴在直线,如下图所示:直线和与分别交于点,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年整形外科手术后护理注意事项单项选择试卷答案及解析
- 排水管网防渗漏技术应用与改进方案
- 防水工程材料损耗控制方案
- 2025年健康教育与促进卫生知识普及评估卷答案及解析
- 施工扬尘污染防治管理方案
- 主题3 人类活动对自然资源的影响说课稿-2023-2024学年高中地理选择性必修3中图中华地图版
- 2025年风湿免疫病学诊断治疗方案设计试卷答案及解析
- 2025年中医科草药处方辨证施治考核模拟试卷答案及解析
- 2025年康复医学运动处方制定答案及解析
- 2025官方加盟代理合同范本
- 4人合股合同协议书范本
- 2023-2025年高考生物试题分类汇编:孟德尔两大遗传定律原卷版
- 2025年军考政治时事政治热点试题题库含答案
- 2025年村医笔试重点题库
- 2025-2026学年人音版(简谱)(2024)初中音乐七年级上册教学计划及进度表
- 养生艾灸直播课件
- 2025年徐州市中考语文试题卷(含答案及解析)
- 云南省2025年校长职级制考试题(含答案)
- 幼儿园美术教师个人工作计划范文
- 2025年中国电信福建公司春季招聘80人笔试参考题库附带答案详解
- 《幼儿园开学第一课》课件
评论
0/150
提交评论