考点解析冀教版8年级下册期末试题附参考答案详解(考试直接用)_第1页
考点解析冀教版8年级下册期末试题附参考答案详解(考试直接用)_第2页
考点解析冀教版8年级下册期末试题附参考答案详解(考试直接用)_第3页
考点解析冀教版8年级下册期末试题附参考答案详解(考试直接用)_第4页
考点解析冀教版8年级下册期末试题附参考答案详解(考试直接用)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、要了解我市初中学生完成课后作业所用的时间,下列抽样最适合的是()A.随机选取城区6所初中学校的所有学生B.随机选取城区与农村各3所初中学校所有女生C.随机选取我市初中学校三个年级各1000名学生D.随机选取我市初中学校中七年级5000名学生2、为了解某市七年级学生的一分钟跳绳成绩,从该市七年级学生中随机抽取100名学生进行调查,以下说法正确的是()A.这100名七年级学生是总体的一个样本 B.该市七年级学生是总体C.该市每位七年级学生的一分钟跳绳成绩是个体 D.100名学生是样本容量3、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有()A.6个 B.7个 C.8个 D.9个4、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式()A.y=54x(x>2) B.y=54x+10(x>2)C.y=54x-90(x>2) D.y=54x+100(x>2)5、如图,四边形ABCD是平行四边形,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接CE,当EA=EC,且点M为BC的中点时,AB:AE的值为()A.2 B. C. D.6、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于()A.2 B. C. D.7、下列调查中,适宜采用普查的是()A.了解我省中学生的视力情况 B.检测一批电灯泡的使用寿命C.了解我校九(1)班学生校服尺寸情况 D.调查《新闻联播》的收视率第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、已知菱形ABCD两条对角线的长分别为6和8,若另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,则菱形EFGH两条对角线的长分别是

_____.2、在平面直角坐标系中,点P的坐标为(a,b),点P的“变换点”P'的坐标定义如下:当a≥b时,P'点坐标为(a,-b);当a<b时,P'点坐标为(a+4,b-2).线段l:y=-0.5x+3(-2≤x≤6)上所有点按上述“变换点”组成一个新的图形,若直线y=kx+5与组成的新的图形有两个交点,则k的取值范围是______.3、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合)且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个结论:①△OEF是等腰直角三角形;②△OEF面积的最小值是;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.所有正确结论的序号是_________________________4、如图,在中,,D为外一点,使,E为BD的中点若,则__________.5、若点是直线上一点,则m=______.6、“”是一款数学应用软件,用“”绘制的函数和的图像如图所示.若,分别为方程和的一个解,则根据图像可知____.(填“”、“”或“”).7、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.8、在平面直角坐标系中,若点P的坐标为(x,y),点Q的坐标为(mx+y,x+my),则称点Q是点P的m级派生点,例如点P(1,2)(3×1+2,1+3×2),即Q(5,7).如图点Q(﹣5,4)是点P(x,y)的﹣级派生点,点A在x轴上,且S△APQ=4,则点A的坐标为_____.三、解答题(7小题,每小题10分,共计70分)1、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.2、为丰富学生的课余生活,某学校准备组织学生举行各类球赛活动(每个学生只能参加一种球类活动),将全校学生参加球类活动的调查结果制成如图所示的扇形统计图.其中参加乒乓球的学生有320人.(1)求全校一共有多少名学生?(2)求参加足球的学生的人数比参加篮球的学生的人数多了几分之几?3、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可).4、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.5、已知一次函数的图象经过点和.(1)求此一次函数的表达式;(2)点是否在直线AB上,请说明理由.6、如图,在四边形ABCD中,AB=AD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.7、如图,在平面直角坐标系中,点O为坐标原点,B(0,n),点A在x轴的负半轴上,点C(m,0),且+|n﹣2|=0.(1)求∠BCO的度数;(2)点P从A点出发沿射线AO以每秒2个单位长度的速度运动,同时,点Q从B点出发沿射线BO以每秒1个单位长度的速度运动,设△APQ的面积为S,点P运动的时间为t,求用t表示S的代数式(直接写出t的取值范围);(3)在(2)的条件下,当点P在x轴的正半轴上,连接AQ、BP、PQ,∠BQP=2∠ABC=2∠OAQ,且四边形ABPQ的面积为25,求PQ的长.-参考答案-一、单选题1、C【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A、随机选取城区6所初中学校的所有学生,不具有代表性,故选项不符合题意;B、随机选取城区与农村各3所初中学校所有女生,不具有代表性,故选项不符合题意;C、随机选取我市初中学校三个年级各1000名学生,具有代表性,故选项符合题意;D、随机选取我市初中学校中七年级5000名学生,不具有代表性,故选项不符合题意;故选:C.【点睛】本题主要考查抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.2、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.这100名七年级学生的一分钟跳绳成绩是总体的一个样本,故该选项不符合题意;B、该市七年级学生的一分钟跳绳成绩是总体,故该选项不符合题意;C、该市每位七年级学生的一分钟跳绳成绩是个体,故该选项符合题意;D、样本容量是100,故该选项不符合题意;故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.4、B【解析】【分析】由题意得,则销售价超过100元,超过的部分为,即可得.【详解】解:∵,∴销售价超过100元,超过的部分为,∴(且为整数),故选B.【点睛】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.5、B【解析】【分析】根据平行四边形的性质、垂直的定义、平行线的判定定理可以推知AE∥CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根据全等三角形的对应边相等知AE=CF,所以对边平行且相等的四边形是平行四边形;连接AC交BF于点O,根据EA=EC推知▱ABCD是菱形,根据菱形的邻边相等知AB=BC;然后结合已知条件“M是BC的中点,AM⊥BC”证得△ADE≌△CBF(ASA),所以AE=CF,从而证得△ABC是正三角形;最后在Rt△BCF中,求得CF:BC=,利用等量代换知(AE=CF,AB=BC)AB:AE=.【详解】解:连接AC,∵四边形ABCD是平行四边形,∴BC∥AD;∴∠ADE=∠CBD,∵AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∴AM∥CN,∴AE∥CF;∴四边形AECF为平行四边形,∵EA=EC,∴▱AECF是菱形,∴AC⊥BD,∴平行四边形ABCD是菱形,∴AB=BC,∵M是BC的中点,AM⊥BC,∴AB=AC,∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=,又∵AE=CF,AB=BC,∴AB:AE=.故选:B.【点睛】本题综合考查了全等三角形的判定与性质、菱形的判定与性质以及等边三角形的判定与性质等知识点,证得▱ABCD是菱形是解题的难点.6、B【解析】【分析】先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.【详解】解:∵四边形ABCD是正方形,∴△ABD和△BCD是等腰直角三角形,如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,由平移的性质得,△DD'E和△D'CF为等腰直角三角形,∴重叠部分的四边形D'EBF为平行四边形,设DD'=x,则D'C=6-x,D'E=x,∴S▱D'EBF=D'E•D'C=(6-x)x=4,解得:x=3+或x=3-,故选:B.【点睛】本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.7、C【解析】【分析】根据适合采用全面调查的方式的情况“当调查的对象个数较少,调查容易进行时,我们采用全面调查的方式进行,当调查的结果有特别要求时,或调查的结果有特殊意义时,采用全面调查的方式进行”进行解答即可得.【详解】解:A、了解我省中学生的视力情况,调查范围广,适合抽样调查,选项说法错误,不符合题意;B、检测一批电灯泡的使用寿命,适合抽样调查,选项说法错误,不符合题意;C、了解我校九(1)班学生校服尺寸情况,适合用普查,选项说法正确,符合题意;D、调查《新闻联播》的收视率,适合用抽样调查,选项说法错误,不符合题意;故选C.【点睛】本题考查了抽样调查与全面调查,解题的关键是掌握适合采用全面调查的方式的情况.二、填空题1、,【解析】【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积,然后根据勾股定理即可得到结论.【详解】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴菱形ABCD的周长是:5×4=20,面积是:×6×8=24.∵另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,∴菱形EFGH的周长和面积分别是40,48,∴菱形EFGH的边长是10,设菱形EFGH的对角线为2a,2b,∴a2+b2=100,×2a×2b=48,∴a=,b=,∴菱形EFGH两条对角线的长分别是,,故答案为:2,.【点睛】本题考查了菱形的性质以及勾股定理.关键是熟练掌握菱形的面积等于对角线积的一半的知识点.2、【解析】【分析】先求当a=b时,x=-0.5x+3,求出分界点(2,2),然后确定分段函数为y=0.5x-3(2≤x≤6)和y=-0.5x+3(2≤x<6),根据直线y=kx+5与组成的新的图形有两个交点,得出点(2,2)和点(6,0)在直角y=kx+5上,得出k=-和k=,列出不等式即可.【详解】解:当a=b时,x=-0.5x+3,解得x=2,分界点为(2,2),∴线段l:y=-0.5x+3(2≤x≤6)上点变为y=0.5x-3(2≤x≤6),线段l:y=-0.5x+3(-2≤x<2)上点用过平移变为y=-0.5x+3(2≤x<6),∵若直线y=kx+5与组成的新的图形有两个交点,∴点(2,2)和点(6,0)在直角y=kx+5上,∴点(2,2)在y=kx+5上,得2=2k+5,解得k=-,点(6,0)在直角y=kx+5上,得6k+5=0,解得k=,直线y=kx+5与组成的新的图形有两个交点,则k的取值范围是.故答案为.【点睛】本题考查新定义“变换点”,根据新定义确定分段函数,利用图像找出满足条件的点坐标,求函数值,列不等式,掌握新定义“变换点”,根据新定义确定分段函数,利用图像找出满足条件的点坐标,求函数值,列不等式是解题关键.3、①③④【解析】【分析】①易证得△OBE≌△OCF(SAS),则可证得结论①正确;②由OE的最小值是O到BC的距离,即可求得OE的最小值1,根据三角形面积公式即可判断选项②错误;③利用勾股定理求得≤EF<2,即可求得选项③正确;④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.【详解】解:①∵四边形ABCD是正方形,AC,BD相交于点O,∴OB=OC,∠OBC=∠OCD=45°,在△OBE和△OCF中,,∴△OBE≌△OCF(SAS),∴OE=OF,∵∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△OEF是等腰直角三角形;故①正确;②∵当OE⊥BC时,OE最小,此时OE=OF=BC=1,∴△OEF面积的最小值是×1×1=,故②错误;③∵BE=CF,∴CE+CF=CE+BE=BC=2,假设存在一个△ECF,使得△ECF的周长是2+,则EF=,由①得△OEF是等腰直角三角形,∴OE=.∵OB=,OE的最小值是1,∴存在一个△ECF,使得△ECF的周长是2+.故③正确;④由①知:△OBE≌△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD=×2×2=1,故④正确;故答案为:①③④.【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.4、##30度【解析】【分析】延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.【详解】解:延长BC、AD交于F,在△ABC和△AFC中,∴△ABC≌△AFC(ASA),∴BC=FC,∴C为BF的中点,∵E为BD的中点,∴CE为△BDF的中位线,∴CE//AF,∴∠ACE=∠CAF,∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠ACE=∠CAF=∠BAC=30°,故答案为:30°.【点睛】本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.5、10【解析】【分析】把点代入解析式,即可求解.【详解】解:∵点是直线上一点,∴.故答案为:10【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.6、<【解析】【分析】根据方程的解是函数图象交点的横坐标,结合图象得出结论.【详解】解:∵方程-x2(x-4)=-1的解为函数图象与直线y=-1的交点的横坐标,-x+4=-1的一个解为一次函数y=-x+4与直线y=-1交点的横坐标,如图所示:由图象可知:a<b.故答案为:<.【点睛】本题考查了函数图象与方程的解之间的关系,关键是利用数形结合,把方程的解转化为函数图象之间的关系.7、【解析】【分析】根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.【详解】解:∵四边形ABCD为矩形,∴,,,∵,BE是的角平分线,∴,∴,在中,根据勾股定理得,,∵,∴,∵EC平分,∴,∴,∴,∴,∴,故答案为:.【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.8、(6,0)或(2,0)【解析】【分析】根据派生点的定义,可列出关于x,y的二元一次方程,求出x、y,即得出P点的坐标.设点A坐标为(t,0),根据,即可列出,解出t的值,即得到A点坐标.【详解】根据点Q(-5,4)是点P(x,y)的级派生点,∴,解得:,∴P点坐标为(4,0).设点A坐标为(t,0),∵,∴,解得:或∴A点坐标为(6,0)或(2,0).故答案为(6,0)或(2,0).【点睛】本题考查坐标与图形的性质,二元一次方程组的应用以及绝对值方程的应用.理解派生点的定义,根据派生点求出P点坐标是解答本题的关键.三、解答题1、(1)(,3)或(4,3)(2)45°(3)y=-247x+【解析】【分析】(1)△ABQ是直角三角形,分两种情况:①∠BQA=90°,AQ⊥BQ,BQ∥x轴,进而得出点坐标;②∠BAQ=90°,BA⊥AQ,如图过点Q作QC⊥OA,垂足为C,在Rt△AOB中,由勾股定理知AB=OA2+OB2,设AC=x,在Rt△ACQ中,由勾股定理知AQ2=AC2+CQ2(2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和BQ∥OP可得,∠PAQ=∠BQA=∠EAQ,AB=QB,AP=12BQ=AE=12AB,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,可证△EMA≌△EFB,求出EF的值,PH的值,有EF(3)如图,由旋转的性质可知AP=AP',AP'∥PQ,P'Q∥AP,证△P'QA≌△PAQ,可知P'Q=AP,P'Q=AP=P'A,过点A作AG⊥BQ于G,设(1)解:∵△ABQ是直角三角形,点A4,∴①当∠BQA=90°时,AQ⊥BQ∵BQ∥x轴∴点坐标为4,3;②当∠BAQ=90°时,BA⊥AQ,如图过点Q作QC⊥OA,垂足为C在Rt△AOB中,由勾股定理知AB=设AC=x,在Rt△ACQ中,由勾股定理知A在Rt△ABQ中,由勾股定理知B∴4+x解得x=∴AC∴OC=OA+AC=∴点坐标为254,3综上所述,点坐标为4,3或254,3(2)解:如图,点P翻折后落在线段AB上的点E处,则∠EAQ又∵BQ∥OP∴∠PAQ∴∠EAQ∴AB∴AP∴点E是AB的中点过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,在△EMA和△EFB中∵∠AEM=∠BEF∴△EMA≌△EFB∴EF=EM=∴EF=3∵PH=OA+AP−OH=3∴EF在Rt△EQF和Rt△PHQ中∵EF=HP∴Rt△EQF≌Rt△PHQ∴∠EQF∴∠PQE∴∠AQP=(3)解:如图由旋转的性质可知AP=A∵A∴∠在△AP'Q∠∴△∴P∴P过点A作AG⊥BQ于G设AP=A∴BQ=2t在Rt△AGP'中,A解得t=∴OP=OA+AP=4+∴点P、Q的坐标分别为57设过点P、Q的直线解析式为将P、Q两点坐标代入得57解得:k=−∴过点P、Q的直线解析式为y=−24【点睛】本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.2、(1)1000(2)6【解析】【分析】(1)用参加乒乓球人数除以其占总人数的百分比可得答案;(2)用足球所占百分比减去篮球所占百分比,再除以篮球所占百分比即可.(1)320÷32%=1000(名),答:全校一共有1000名学生;(2)(25%−19%)÷19%=619答:参加足球的学生的人数比参加篮球的学生的人数多了619【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解题关键是通过扇形统计图表示出各部分数量同总数之间的关系.3、(1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵,,∴,,.∵,∴.在中,由,得.解得.∴,.∵是由旋转得到的,∴,.∴.∴.∴.在中,.∴点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴.∴.∵是由旋转得到的,∴.在中,由,得.∴点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.4、58【解析】【分析】连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=58,然后根据直角三角形斜边上的中线性质得到CT的长.【详解】解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,在Rt△ACF中AF=(5∵T为AF的中点,∴CT=1∴CT的长为582【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.5、(1)一次函数的表达式为;(2)点在直线AB上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y=kx+b得到关于k、b的方程组,然后解方程求出k与b的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将和代入,得,解得,,∴一次函数的表达式为(2)解:点C在直线AB上,理由:当时,,∴点在直线AB上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.6、(1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DF,∵AD//BC,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论