解析卷河南省灵宝市中考数学真题分类(平行线的证明)汇编综合训练试题(解析版)_第1页
解析卷河南省灵宝市中考数学真题分类(平行线的证明)汇编综合训练试题(解析版)_第2页
解析卷河南省灵宝市中考数学真题分类(平行线的证明)汇编综合训练试题(解析版)_第3页
解析卷河南省灵宝市中考数学真题分类(平行线的证明)汇编综合训练试题(解析版)_第4页
解析卷河南省灵宝市中考数学真题分类(平行线的证明)汇编综合训练试题(解析版)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省灵宝市中考数学真题分类(平行线的证明)汇编综合训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为(

)A.75° B.65°C.40° D.30°2、用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°3、如图,在△ABC中,∠ABC的平分线与△ABC的外角平分线相交于点D,,则∠D的度数是(

)A.44° B.24° C.22° D.20°4、如图,∠ABD、∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为(

)A.15° B.20° C.25° D.30°5、如下图,在下列条件中,能判定AB//CD的是(

)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠46、如图,在△ABC中,∠A=90°,BE,CD分别平分∠ABC和∠ACB,且相交于F,,于点G,则下列结论①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正确的结论是(

)A.①②③ B.①③④ C.①③④⑤ D.①②③④7、如图,把沿线段折叠,使点落在点处;若,,,则的度数为(

)A. B. C. D.8、下列命题中,假命题是(

)A.正方形都相似 B.对角线和一边对应成比例的矩形相似C.等腰直角三角形都相似 D.底角为60°的两个等腰梯形相似第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,将三角尺和三角尺(其中)摆放在一起,使得点在同一条直线上,交于点,那么度数等于_____.2、如图,将沿翻折,顶点均落在O处,且与重合于线段,测得,则________度.3、如图,直线AB、CD相交于点O,∠BOC=α,点F在直线AB上且在点O的右侧,点E在射线OC上,连接EF,直线EM、FN交于点G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度数与∠AFE的度数无关,则∠EGF=__.(用含有α的代数式表示)4、一副三角尺如图摆放,是延长线上一点,是上一点,,,,若∥,则等于_________度.5、如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是;6、如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为_______.7、如图,点D是△ABC两条角平分线AP、CE的交点,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.2、如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.3、已知:如图所示,DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,试说明CD⊥AB.4、直线MN与直线PQ相交于O,∠POM=60°,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,∠BAO=70°,已知AE、BE分别是∠BAO和∠ABO角的平分线,试求出∠AEB的度数.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)在(2)的条件下,在△CDE中,如果有一个角是另一个角的2倍,请直接写出∠DCE的度数.5、如图,已知BD⊥AC,EF⊥AC,垂足分别为D、F,∠1=∠2,请将证明∠ADG=∠C过程填写完整.证明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥∴∠ADG=∠C6、如图,点A在MN上,点B在PQ上,连接AB,过点A作交PQ于点C,过点B作BD平分∠ABC交AC于点D,且.(1)求证:;(2)若,求∠ADB的度数.7、如图,AB//CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD//BC.-参考答案-一、单选题1、B【解析】【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.【详解】解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,故选:B.【考点】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.2、D【解析】【分析】根据反证法的证明步骤解答即可.【详解】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:D.【考点】本题考查反证法,熟知反证法的证明步骤,正确得出原结论的反面是解答的关键.3、C【解析】【分析】根据角平分线定义可得∠CBD=∠ABC,根据三角形外角性质表示出∠DCE,然后整理即可得到∠D=∠A,从而求出度数.【详解】解:∵BD平分∠ABC,∴∠CBD=∠ABC,∵CD是△ABC的外角平分线,∴∠DCE=∠ACE,∵∠DCE=∠CBD+∠D=∠ABC+∠D,∠ACE=∠A+∠ABC,∴∠ABC+∠D=(∠ABC+∠A).∴∠D=∠A=22°.故选:C.【考点】此题考查了角平分线的计算,三角形外角的性质,熟记三角形外角性质是解题的关键.4、B【解析】【分析】利用三角形外角的性质,得到∠ACD与∠ABD的关系,然后用角平分线的性质得到角相等的关系,代入计算即可得到答案.【详解】解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故选B.【考点】本题综合考查角平分线的性质、三角形外角的性质、三角形内角和等知识点.解题的关键是熟练的运用所学性质去求解.5、C【解析】【详解】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.6、C【解析】【分析】根据平行线的性质与角平分线的定义即可判断①;只需要证明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判断③;根据角平分线的定义和三角形内角和定理先推出,即可判断④⑤;根据现有条件无法推出②.【详解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正确;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正确;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分别平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正确;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正确;根据现有条件,无法推出CA平分∠BCG,故②错误;故选C.【考点】本题主要考查了平行线的性质,角平分线的定义,三角形内角和定理,熟知平行线的性质,角平分线的定义是解题的关键.7、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求.【详解】解:∵沿线段折叠,使点落在点处,∴,∴,∵,,∴,∵,∴,∴,故选:C.【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.8、B【解析】【分析】根据命题的定义判断真假即可;【详解】B没说清楚一边是矩形的长还是宽;故答案选B.【考点】本题主要考查了命题的知识点,准确判断是解题的关键.二、填空题1、105°【解析】【分析】利用直角三角形的两个锐角互余求得∠ABC与∠FDE的度数,然后在△MDB中,利用三角形内角和定理求得∠DMB,再依据对顶角相等即可求解.【详解】解:∵∠ABC=90°−∠C=90°−60°=30°,∠FDE=90°−∠F=90°−45°=45°,∴∠DMB=180°−∠ABC−∠FDE=180°−30°−45°=105°,∴∠CMF=∠DMB=105°.故答案为:105°.【考点】本题考查了直角三角形两锐角互余、三角形的内角和定理以及对顶角的性质,正确求得∠DMB的度数是关键.2、96【解析】【分析】延长FO交AC于点G.根据三角形内角和定理可求出.由翻折的性质可知,即得出,从而可求出.由三角形外角性质结合三角形内角和定理即可得出,从而可求出.【详解】解:如图,延长FO交AC于点G.∵,∴.由翻折可知,∴,即,∴.∵,,∴,即,∴.故答案为:96.【考点】本题考查三角形内角和定理,三角形外角性质,翻折的性质.正确的作出辅助线是解题关键.3、α##α3【解析】【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度数与∠AFE的度数无关,∴3n﹣1=0,即n=,∴∠EGF=α;故答案为:α.【考点】此题考查了三角形外角的性质及角度计算,解题的关键是理解∠EGF的度数与∠AFE的度数无关的含义.4、15【解析】【分析】根据三角形内角和定理得出∠ACB=60°,∠DEF=45°,再根据两直线平行内错角相等得到∠CEF=∠ACB=60°,根据角的和差求解即可.【详解】解:在△ABC中,∵,,∴∠ACB=60°.在△DEF中,∵∠EDF=90°,,∴∠DEF=45°.又∵∥,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF-∠DEF=60°-45°=15°.故答案为:15.【考点】本题考查三角形内角和定理及平行线的性质,熟练掌握平行线的性质是解题的关键.5、110°【解析】【详解】试题解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案为点睛:同位角相等,两直线平行.6、【解析】【分析】作FH垂直于FE,交AC于点H,可证得,由对应边、对应角相等可得出,进而可求出,则.【详解】作FH垂直于FE,交AC于点H,∵又∵,∴∵,FA=CF∴∴FH=FE∵∵∴又∵DF=DF∴∴∵∴∵∴∴故答案为:.【考点】本题考查了等腰三角形的性质,全等三角形的判定及其性质,作辅助线HF垂直于FE是解题的关键.7、110【解析】【分析】根据CE,AP分别平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根据三角形内角和定理,求出∠ADC即可.【详解】解:∵CE,AP分别平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案为:110.【考点】本题考查了角平分线的性质和三角形内角和定理,熟练掌握了角平分线的性质是解题的关键.三、解答题1、(1)25°(2)①当点P在线段BE上时,2α-β=50°;②当点P在线段CE上时,2α+β=50°【解析】【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根据AE平分∠BAC,P与E重合,可得∠ACD,从而α=∠ACB−∠ACD;(2)分两种情况:①当点P在线段BE上时,可得∠ADC=∠ACD=90°−α,根据∠ADC+∠BAD=∠B+∠BCD,即可得2α−β=50°;②当点P在线段CE上时,延长AD交BC于点F,由∠ADC=∠ACD=90°−α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°−α=40°+α+β,即2α+β=50°.(1)解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=∠BAC=25°,∵P与E重合,∴D在AB边上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;(2)①如图1,当点P在线段BE上时,∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如图2,当点P在线段CE上时,延长AD交BC于点F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【考点】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质.2、(1)见解析;(2)见解析【解析】【分析】(1)先由平行线的性质得∠B=∠C,再由得出,从而利用SAS判定△ABF≌△DCE;(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∵∠AFB+∠AFE=180°,∠DEC+∠DEF=180°,∴∠AFE=∠DEF,∴AF∥DE.【考点】本题考查了平行线的判定、全等三角形的判定与性质,证明△ABF≌△DCE是解题的关键.3、证明见解析【解析】【分析】先利用垂直于同一条直线的两直线平行证明DE∥BC,利用内错角相等得∠2=∠DCF,即可证明GF∥DC,再利用平行线的传递性即可解题.【详解】证明:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠2=∠DCF,又∵∠1=∠2,∴∠1=∠DCF,∴GF∥DC,又∵FG⊥AB,∴CD⊥AB.【考点】本题考查了平行线的性质和判定,中等难度,熟悉平行线的性质是解题关键.4、(1)∠AEB的度数为120°;(2)∠CED的大小不发生变化,其值为60°;(3)∠DCE的度数为40°或80°.【解析】【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根据AE、BE分别是∠BAO和∠ABO的角平分线,可得∠EAB和∠EBA的值,在△EAB中,根据三角形内角和即可得出∠AEB的大小;(2)不发生变化,延长BC、AD交于点F,根据角平分线的定义以及三角形内角和可得∠F=90°-∠AOB,∠CED=90°-∠F,即可得出∠CED的度数;(3)分三种情况求解即可.【详解】解:(1)∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠EAB=∠OAB=35°,∠EBA=∠OBA=25°,∴∠AEB=180°-35°-25°=120°;(2)不发生变化,理由如下:如图,延长BC、AD交于点F,∵点D、C分别是∠PAB和∠ABM的角平分线上的两点,∴∠FAB=∠PAB=(180°-∠OAB),∠FBA=∠MBA=(180°-∠OBA),∴∠FAB+∠FBA=(180°-∠OAB)+(180°-∠OBA)=(180°+∠AOB)=90°+∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°-∠AOB=60°,同理可求∠CED=90°-∠F=60°;(3)①当∠DCE=2∠E时,显然不符合题意;②当∠DCE=2∠CDE时,∠DCE==80°;③当∠DCE=∠CDE时,∠DCE==40°,综上可知,∠DCE的度数40

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论