解析卷人教版8年级数学上册《全等三角形》章节练习试题_第1页
解析卷人教版8年级数学上册《全等三角形》章节练习试题_第2页
解析卷人教版8年级数学上册《全等三角形》章节练习试题_第3页
解析卷人教版8年级数学上册《全等三角形》章节练习试题_第4页
解析卷人教版8年级数学上册《全等三角形》章节练习试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,已知,下面甲、乙、丙、丁四个三角形中,与全等的是(

)A.甲 B.乙 C.丙 D.丁2、如图,若,则下列结论中不一定成立的是(

)A. B. C. D.3、如图,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS4、在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(

)A.点M B.点N C.点P D.点Q5、已知,如图,在△ABC中,D为BC边上的一点,延长AD到点E,连接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列结论:①△ABD为等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正确的结论个数有(

)A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在和中,点B、E、C、F在同一条直线上,且,,请你再添加一个适当的条件:________________,使.2、如图,平分,.填空:因为平分,所以________.从而________.因此________.3、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.4、如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=______°.5、如图,已知AC与BF相交于点E,ABCF,点E为BF中点,若CF=8,AD=5,则BD=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,AB=AC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,∠DAC的平分线交DM于点F.求证:AF=CM.2、已知:RtABC中,∠B=90°,D是BC上一点,DF⊥BC交AC于点H,且DF=BC,FG⊥AC交BC于点E.求证:AB=DE.3、(1)如图,在中,按以下步骤作图(保留作图痕迹):①以点为圆心,任意长为半径作弧,分别交、于点D、E.②分别以点D、E为圆心,大于的长为半径作弧,两弧交于点.③作射线交于点.则是的______线.(2)如果,,的面积为18.则的面积为______.4、如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.5、如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.-参考答案-一、单选题1、B【解析】【分析】根据全等三角形的判定定理逐判定即可.【详解】解:A.△ABC和甲所示三角形只有一边一角对应相等,无法判定它们全等,故本选项不符合题意;B.△ABC和乙所示三角形有两边及其夹角对应相等,根据SAS可判定它们全等,故本选项符合题意;C.△ABC和丙所示三角形有两边一角相等,但不是对应的两边一角,无法判定它们全等,故本选项不符合题意;;D.△ABC和丁所示三角形有两角对应相等,有一边相等,但相等边不是两角的夹边,所以两角一边不是对应相等,无法判定它们全等,故本选项不符合题意;;故选:B.2、A【解析】【分析】根据翻三角形全等的性质一一判断即可.【详解】解:∵△ABC≌△ADE,∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,∴∠BAD=∠CAE,∵AD=AB,∴∠ABD=∠ADB,∴∠BAD=180°-∠ABD-∠ADB,∴∠CDE=180°-∠ADB-ADE,∵∠ABD=∠ADE,∴∠BAD=∠CDE故B、C、D选项不符合题意,故选:A.【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质.3、B【解析】【分析】根据平行线性质得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出△ABD≌△CDB,从而推出∠A=∠C,即可得出答案.【详解】,,在和中,,≌,,故选B.【考点】本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.4、A【解析】【分析】利用到角的两边的距离相等的点在角的平分线上进行判断.【详解】点P、Q、M、N中在∠AOB的平分线上的是M点.故选:A.【考点】本题主要考查了角平分线的性质,根据正方形网格看出∠AOB平分线上的点是解答问题的关键.5、C【解析】【分析】作AF平分∠BAD.可根据证△ABF≌△ADF,推出AB=AD,得出△ABD为等腰三角形;可根据同弦所对的圆周角相等知点A、B、C、E共圆,可判出BE=CE=CD,根据三角形内角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根据∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分线.【详解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正确;∵AE=AC,∴∠6=∠4+∠7==90°−,∵∠5=∠ADB=∠ABD==90°−,∠1=∠2,∴∠5=∠6=90°−∴CE=CD,∠4=180°−∠5−∠6=180°−2(90°−)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正确;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正确∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④错误;故选C.【考点】本题主要考查了全等三角形的判定和性质、同弦所对的圆周角相等、三角形内角和的相关知识,灵活运用所学知识是解题的关键.二、填空题1、或或【解析】【分析】根据全等三角形的判定即可求解.【详解】解:①根据定理,即,可得;②根据定理,即,可得;③若,则,则根据定理,即可得;综上所述,添加一个适当的条件:或或,故答案为:或或.(答案不唯一)【考点】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.2、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由内错角相等可以得出两直线平行.【详解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(内错角相等,两直线平行).故答案为:∠CAB,∠CAB,DC.【考点】本题考查了平行线的判定定理以及角平分线的定义,解题的关键是找出∠CAB=∠2.解决该类题型只需牢牢掌握平行线的判定定理即可.3、35°.【解析】【分析】根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.【详解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案为35°.【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.4、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180°来求角的度数.【详解】∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案为30.【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来.5、3【解析】【分析】利用全等三角形的判定定理和性质定理可得结果.【详解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵点E为BF中点,∴BE=FE,在△ABE与△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案为:3.【考点】本题主要考查了全等三角形的判定定理和性质定理,熟练掌握定理是解答此题的关键.三、解答题1、证明见解析.【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证.【详解】∵,∴,∴,∵AF是的平分线,∴,∵E是AC的中点,∴,在和中,,∴,∴.【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.2、见解析【解析】【分析】根据DF⊥BC,FG⊥AC,可得,由对顶角相等可得,进而根据等角的余角相等可得,再利用ASA证明,即可得证.【详解】证明:DF⊥BC,FG⊥AC,又∵在与中(ASA)AB=DE.【考点】本题考查了三角形全等的性质与判定,等角的余角相等,掌握全等三角形的性质与判定是解题的关键.3、(1)角平分;(2)27【解析】【分析】(1)根据尺规作图要求,按给定的步骤与作法画图即可;(2)根据角分线性质可知,两三角形的AB与BC边上的高相等,则得面积比为底的比,依此列式求解即可.【详解】解:(1)如图所示,BG即为所求;故答案为:角平分;(2)如图,作GM⊥AB于M,作GN⊥BC于N,∵由(1)得BG为∠ABC的角平分线,∴GM=GN,∴,解得:.故答案为:27.【考点】本题考查尺规作图,角平分线性质,三角形面积;掌握尺规作图步骤与要求,根据角平分线性质得出两三角形的高相等,则面积比等于底的比是解题关键.4、(1)150°;(2)证明见解析.【解析】【分析】(1)根据两直线平行,同位角相等可得,再根据角平分线的定义求出,然后根据平角等于列式进行计算即可得解;(2)先求出,再根据对顶角相等求出,然后根据角平分线的定义即可得解.【详解】解:(1),,平分,,;(2),,,,,平分.【考点】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.5、见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论