版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,在平行四边形中,平分,交边于,,,则的长为()A.1 B.2 C.3 D.52、平面上六个点A,B,C,D,E,F,构成如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F度数是()A.135度 B.180度 C.200度 D.360度3、广渠门中学初一年级开展以“重走红军长征路”为主题的实践活动,依托龙潭公园的环湖步行道设计红军长征路线.如图是利用平面直角坐标系画出的环湖步行道路线上主要地点的大致分布图,这个坐标系分别以正东(向右)、正北(向上)方向为x轴、y轴的正方向,如果表示吴起镇的点的坐标为(2,14),表示腊子口的点的坐标为(﹣12,12),那么表示遵义的点的坐标是()A.(9,2) B.(2,1) C.(16,1) D.(8,﹣5)4、下列调查中,适合采用抽样调查的是()A.了解全班学生的身高 B.检测“天舟三号”各零部件的质量情况C.对乘坐高铁的乘客进行安检 D.调查某品牌电视机的使用寿命5、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD6、如图所示各图中反映了变量y是x的函数是()A. B.C. D.7、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为()A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.2、如图,四边形是菱形,与相交于点,添加一个条件:________,可使它成为正方形.3、如图,已知A、B、C三点的坐标分别是、、,过点C作直线轴,若点P为直线l上一个动点,且的面积为5,则点P的坐标是______.4、如图(1),△ABC和是两个腰长不相等的等腰直角三角形,其中,∠A=.点、C'、B、C都在直线l上,△ABC固定不动,将在直线l上自左向右平移,开始时,点与点B重合,当点移动到与点C重合时停止.设△移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则BC的长是____.5、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm2.6、若一次函数的图象经过点,且不经过第四象限,则的取值范围为______.7、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)8、已知一个多边形的内角和为,则这个多边形是________边形.三、解答题(7小题,每小题10分,共计70分)1、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.(1)如图1,CDOB,CD=OA,连接AD,BD.①;②若OA=2,OB=3,则BD=;(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.2、如图1,在平面直角坐标系中存在矩形ABCO,点A(﹣a,0)、点B(﹣a.b),且a、b满足:b12.(1)求A、B点坐标;(2)作∠OAB的角平分线交y轴于D,AD的中点为E,连接BE,作EF⊥BE交x轴于F,求EF的长;(3)如图2,将矩形ABCO向左推倒得到矩形A'B'C'O',使A与A'重合,B'落在x轴上.现在将矩形A'B'C'O'沿射线AD以1个单位/秒平移,设平移时间为t,用t表示平移过程中矩形ABCD与矩形A'B'C'O'重合部分的面积.3、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).(1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;(2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;(3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.4、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形5、如图,在四边形ABCD中,AB=AD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.6、为了了解长春市冬季的天气变化情况,热爱气象观察的小明记录了2021年11月份30天的天气情况,具体信息如下:日期最高气温最低气温天气日期最高气温最低气温天气11﹣014℃0℃多云11﹣162℃﹣2℃晴11﹣029℃3℃阴11﹣176℃﹣1℃阴11﹣0312℃2℃晴11﹣184℃﹣6℃多云11﹣0415℃﹣2℃阴11﹣190℃﹣6℃多云11﹣0515℃10℃多云11﹣200℃﹣7℃多云11﹣062℃﹣6℃多云11﹣21﹣4℃﹣9℃阴11﹣07﹣3℃﹣4℃多云11﹣22﹣8℃﹣12℃多云11﹣089℃﹣4℃多云11﹣23﹣8℃﹣15℃晴11﹣09﹣3℃﹣6℃多云11﹣24﹣7℃﹣14℃晴11﹣10﹣2℃﹣5℃小雪11﹣25﹣5℃﹣13℃多云11﹣116℃2℃多云11﹣26﹣3℃﹣13℃多云11﹣12﹣1℃﹣7℃晴11﹣270℃﹣1℃多云11﹣134℃﹣6℃多云11﹣286℃﹣4℃多云11﹣1412℃9℃阴11﹣29﹣2℃﹣7℃多云11﹣152℃﹣4℃晴11﹣30﹣4℃﹣11℃多云请你帮助小明同学把以上数据整理成统计图表.2021年11月份长春市最低气温统计表最低气温分组频数频率10℃及10℃以上大于等于5℃小于10℃大于等于0℃小于5℃4大于等于﹣5℃小于0℃90.3大于等于﹣10℃小于﹣5℃a﹣10℃以下bm(1)补全条形统计图;(2)2021年11月份长春市最低气温统计表中a=;b=;m=.7、在平面直角坐标系中,点O为坐标原点,点A(﹣2,2)(﹣3,﹣2)的位置如图所示.(1)作出线段AB关于y轴对称的线段A′B′,并写出点A、B的对称点A′、B′的坐标;(2)连接AA′和BB′,请在图中画一条线段,将图中的四边形AA′B′B分成两个图形,一个是轴对称图形,另一个是中心对称图形,并且线段的一个端点为四边形的顶点(每个小正方形的顶点均为格点).-参考答案-一、单选题1、B【解析】【分析】先由平行四边形的性质得,,再证,即可求解.【详解】解:四边形是平行四边形,,,,平分,,,,,故选:B.【点睛】本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.2、D【解析】【分析】根据三角形外角性质及四边形内角和求解即可.【详解】解:如下图所示:根据三角形的外角性质得,∠1=∠C+∠E,∠2=∠B+∠D,∵∠1+∠2+∠A+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:D.【点睛】此题考查了三角形的外角性质,熟记三角形外角性质及四边形内角和为360°是解题的关键.3、C【解析】【分析】直接利用吴起镇和腊子口的位置进而确定原点的位置,进而确定遵义的点的坐标.【详解】解:如图所示,建立平面直角坐标系,由题意可知:在x轴上每个小格表示2个单位,在y轴上每个小格表示1个单位,遵义的点的坐标是(16,1)故选:C.【点睛】此题主要考查了坐标确定位置,正确利用已知点坐标得出原点位置是解题关键.4、D【解析】【分析】对于精确度要求高的调查,事关重大的调查往往选用普查.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【详解】解:A、对了解全班学生的身高,必须普查,不符合题意;B、检测“天舟三号”各零部件的质量情况,必须普查,不符合题意;C、对乘坐高铁的乘客进行安检,必须普查,不符合题意;D、调查调查某品牌电视机的使用寿命,适合抽样调查,符合题意;故选:D.【点睛】本题考查的是普查和抽样调查的选择,解题的关键是掌握调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.5、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴,故B正确;∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.6、D【解析】【分析】函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,只有D正确.故选:D.【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7、A【解析】【分析】根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.【详解】解:点M(1,2)关于x轴的对称点的坐标为(1,-2);故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特征,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).二、填空题1、3.6##【解析】【分析】首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵将AB边沿AE折叠到AF,∴AB=AF,∠B=∠AFB=90°,在Rt△ABE和Rt△AFB中,,∴Rt△ABE≌Rt△AFB(HL),∴BE=EF,同理可得:DG=FG,∵点G恰为CD边中点,∴DG=FG=3,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,∴BE=EF=2,CE=4,∴S△CEG=×4×3=6,∵EF∶FG=2∶3,∴S△EFC=×6=,∴S△AFC=S△AEC﹣S△AEF﹣S△EFC=×4×6﹣×2×6﹣=12﹣6﹣=3.6.故答案为:3.6.【点睛】本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.2、【解析】【分析】根据“有一个角是直角的菱形是正方形”可得到添加的条件.【详解】解:由于四边形是菱形,如果,那么四边形是正方形.故答案为:.【点睛】本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.3、或##或【解析】【分析】设P(m,2),过A作AE⊥直线l于点E,延长AB与l交于点D,根据S△PAB=S△PAD−S△PBD列出m的方程,进行解答便可.【详解】解:设P(m,2),过A作AE⊥直线l于点E,延长AB与l交于点D,如图,∴E(1,2)∵A(1,-1)、B(2,0)设直线AB的解析式为y=kx+b,把A(1,-1)、B(2,0)代入上式得,解得∴直线AB的解析式为y=x-2,当y=2时,2=x-2,则x=4,∴D(4,2),∴ED=3,PD=|4–m|,∴S△PAB=S△PAD−S△PBD=,∴∴解得,m=-6或14,∴P(-6,2)或(14,2).故答案为:(-6,2)或(14,2).【点睛】本题主要考查了三角形的面积计算,图形与坐标特征,关键是根据S△PAB=S△PAD−S△PBD列出方程解答.4、6【解析】【分析】观察函数图象可得,重叠部分的图形均为等腰直角三角形,运动距离为a时函数面积为1,知,求出a的值,再运动4个单位长度,面积保持不变,由此求出的长度,即可得到答案.【详解】解:如图,运动过程中,重叠部分的图形均为等腰直角三角形,图2至图4重叠部分面积不变,都是的值,由题中的函数图象知,.当恰为1时(如图2).设,则,∴a=2,使保持1时,即下图中图2—图4的情形,即图2中的长为4.∴BC的长为6.故答案为:6.【点睛】此题考查了运动问题,函数图象,会看函数图象,根据图形运动结合函数图象得到相关信息由此解决问题是解题的关键.5、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,..,根据勾股定理可知:..解得:.的面积为:.故答案为:.【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.6、【解析】【分析】把点代入得,根据一次函数不经过第四象限求得取值范围即可求得结论.【详解】解:∵一次函数的图象经过点,∴∴∵一次函数不经过第四象限∴,即解得,又∴即故答案为:【点睛】本题主要考查了一次函数的图象与性质,求出是解答本题的关键.7、【解析】【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P1(3,y1)、P2(2,y2)在一次函数y=8x-1的图象上,∴y1=8×3-1=23,y2=8×2-1=15,∵23>15,∴y1>y2.故答案为:>.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8、八##8【解析】【分析】n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据n边形的内角和公式,得(n-2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:八.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.三、解答题1、(1)△DCA;(2)∠ABO+∠OCE=45°,理由见解析(3)【解析】【分析】(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.(1)解:①∵CD∥OB,∴∠ACD=∠BOA=90°,又∵OB=CA,OA=CD,∴△AOB≌△DCA(SAS);故答案为:△DCA;②如图所示,过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,∴CD=OA=2,AC=OB=3,∵OC⊥OB,DR⊥OB,CD∥OB,∴DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,∴BR=OB+OR=5,∴;故答案为:;(2)解:∠ABO+∠OCE=45°,理由如下:如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,在△AOB和△WCA中,,∴△AOB≌△WCA(SAS),∴AB=AW,∠ABO=∠WAC,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠BAO+∠WAC=90°,∴∠BAW=90°,又∵AB=AW,∴∠ABW=∠AWB=45°,∵BE⊥OC,CW⊥OC,∴BE∥CW,又∵BE=OA=CW,∴四边形BECW是平行四边形,∴BW∥CE,∴∠WJC=∠BWA=45°,∵∠WJC=∠WAC+∠JCA,∴∠ABO+∠OCE=45°;(3)解:如图3-1所示,连接AF,∴,∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,∵E是OB的中点,BE=OA,∴BE=OE=OA,∴OB=AC=2OA,∵△CFQ是等腰直角三角形,CF=QF,∴∠CFQ=∠CFA=90°,∴,∴,∴.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.2、(1)A(﹣4,0),B(﹣4,12);(2);(3)【解析】【分析】(1)利用二次根式的性质求出a,b的值即可.(2)如图1中,过点E作EH⊥AB于H,EJ⊥OA于J.证明△BHE≌△FJE(ASA),推出BH=FJ=10,可得结论.(3)分三种情形讨论求解①如图2中,当0≤t≤4时,重叠部分是四边形MNA′O′.②如图3中,当4<t≤8时,重叠部分是四边形MNKP.③如图4中,当8<t<12时,重叠部分是四边形BMPC.④当t≥12时,没有重叠部分;(1)解:∵b12,∴,∴a=4,b=12,∴A(﹣4,0),B(﹣4,12).(2)解:如图1中,过点E作EH⊥AB于H,EJ⊥OA于J.∵四边形ABCO是矩形,∴∠OAB=90°.∵A(﹣4,0),B(﹣4,12),∴OA=4,AB=OC=12.∵AD平分∠OAB,∴∠DAO=45°.∵∠AOD=90°,∴△AOD是等腰直角三角形,∴OA=OD=4,∴D(0,4).∵AE=ED,∴E(﹣2,2),∴EH=EJ=2,∴BH=12-2=10.∵∠BEF=∠HEJ=90°,∴∠BEH=∠FEJ.∵∠BHE=∠FJE=90°,∴△BHE≌△FJE(ASA),∴BH=FJ=10,∴EF2.(3)解:∵OA=OD=4,∴AD=,∴当A'与D重合时,t=4;当MO'与BC重合时,A'运动的路径长为8,此时t=8;当NA'与BC重合时,A'运动的路径长为12,此时t=12;①如图2﹣1中,当0≤t≤4时,重叠部分是四边形MNA'O',在Rt△ANA'中,∵AN2+A'N2=A'A2,∴NA'=,∴S=MN•NA'=4t=2t.②如图2﹣2中,当4t≤8时,重叠部分是四边形MNKP,3、(1)y1=﹣x+3(2)n=a+b(3)当a>b时,x>1;当a<b时,x<1【解析】【分析】(1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;(2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到am+b=nbm+a=n,先利用加减消元法求出m,然后得到n与a、b(3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.(1)解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得,解得,∴y1的函数表达式为y1=﹣x+3;(2)解:∵y1与y2的图象交于点A(m,n),∴am+b=nbm+a=n∴m=1,n=a+b;(3)解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,∵y3>y4,∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,整理得(a﹣b)x>a﹣b,当a>b时,x>1;当a<b时,x<1.【点睛】本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.4、证明见解析【解析】【分析】平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论