




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《一次函数》定向训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、一次函数y=2021x﹣2022的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、一次函数y=kx-m,y随x的增大而增大,且km<0,则在坐标系中它的大致图象是()A. B.C. D.3、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.当乙摩托车到达A地时,甲摩托车距离A地kmD.经过0.25小时两摩托车相遇4、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2 B.x≤2 C.x≥3 D.x≤35、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是().A.-2 B.2C.4 D.﹣4第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)2、若函数y=kx+b(k,b为常数)的图象如图所示,那么当0<y≤1时,x的取值范围是____.3、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=___________________,△APE的面积等于6.4、任何一个以x为未知数的一元一次不等式都可以变形为_____(a≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.5、某图书馆对外出租书的收费方式是:每本书出租后的前两天,每天收0.6元,以后每天收0.3元,那么一本书在出租后天后,所收租金与天数的表达式为_____.三、解答题(5小题,每小题10分,共计50分)1、一次函数的图像过A(1,2),B(3,−2)两点.(1)求函数的关系式;(2)画出该函数的图像;(3)由图像观察:当x时,y>0;当x时,y<0;当0≤x≤3时,y的取值范围是.2、如图,△ABC的三个顶点坐标分别为A(2,3),B(1,1),C(5,3).(1)作△ABC关于y轴对称的图形△A'B'C(2)在x轴上找一点P,使得PC+PB最小,请直接写出点P的坐标.3、我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,连云港地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式.(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?4、已知函数y=(2-m)x+2n-3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?5、高斯记号x表示不超过x的最大整数,即若有整数n满足n≤x<n+1,则x=n.当−1≤x<1时,请画出点P-参考答案-一、单选题1、B【解析】【分析】根据一次函数y=2021x-2022中k、b的取值特点,判断函数图象经过第一、三、四象限.【详解】解:一次函数y=2021x-2022中,k=2021>0,∴一次函数经过第一、三象限,∵b=-2022<0,∴一次函数与y轴的交点在x轴下方,∴一次函数经过第一、三、四象限,∴一次函数图象不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数k、b的特点与函数图象的关系是解题的关键.2、B【解析】【分析】根据一次函数的性质以及有理数乘法的性质,求得、的符号,即可求解.【详解】解:一次函数y=kx-m,y随x的增大而增大,可得,,可得,则一次函数y=kx-m,经过一、三、四象限,故选:B【点睛】本题考查的是一次函数的图象与系数的关系,涉及了一次函数的增减性,有理数乘法的性质,解题的关键是掌握一次函数的有关性质以及有理数乘法的性质,正确判断出、的符号.3、D【解析】【分析】由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;甲的速度为:20÷0.6=(km/h),则甲行驶0.3h时的路程为:×0.3=10(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;当乙摩托车到达A地时,甲摩托车距离A地:×0.5=(km),故选项C正确;乙的速度为:20÷0.5=40(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;故选:D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答.4、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.5、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.二、填空题1、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.2、0≤x<2【解析】【分析】根据一次函数图象的性质利用数形结合可直接解答.【详解】解:由一次函数的图象可知,当时,x的取值范围是.故答案为:.【点睛】本题考查的是根据一次函数与坐标轴的交点求自变量的范围,利用数形结合的思想是解答此题的关键.3、1.5或5或9【解析】【分析】分为两种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P在AC上.∵中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵的面积等于6,∴=AP•CE=AP×4=6.∵AP=3,∴t=1.5.如图2,当点P在BC上.则t>3∵E是DC的中点,∴BE=CE=4.∴=EP•AC=EP×6=6,∴PE=2,∴t=5或t=9.总上所述,当t=1.5或5或9时,的面积会等于6.故答案为:1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.4、ax+b>0或ax+b<0y=ax+b自变量【解析】【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x为未知数的一元一次不等式都可以变形为ax+b>0或ax+b<0(a≠0)的形式,所以解一元一次不等式相当于在某个一次函数y=ax+b的值大于0或小于0时,求自变量的取值范围.故答案为:ax+b>0或ax+b<0;y=ax+b;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、【解析】【分析】根据每本书出租后的前两天,每天收0.6元,以后每天收0.3元,列出一本书在出租后天后,所收租金与天数的表达式即可.【详解】解:由题意得,,故答案为:.【点睛】本题考查了一次函数的应用,读懂题意,根据题意列出所收租金与天数的表达式是解本题的关键.三、解答题1、(1)y=−2x+4;(2)见解析;(3)x<2;x>2;−2≤y≤4【解析】【分析】(1)运用待定系数法求出函数关系式即可;(2)根据“两点确定一条直线”画出直线即可;(3)根据函数图象解答即可.【详解】解:(1)设经过A,B两点的直线解析式为y=kx+b,把A(1,2),B(3,−2)两点坐标代入,得k+b=23k+b=−2解得,k=−2b=4∴直线的解析式为y=−2x+4;(2)当x=0时,y=4,当y=0时,x=2,∴直线经过(0,4),(2,0),画图象如图所示,(3)根据图象可得:当x<2时,y>0;当x>2时,y<0;当0≤x≤3时,−2≤y≤4故答案为:x<2;x>2;−2≤y≤4【点睛】本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.2、(1)见解析,A'(−2,3);C'(−5,3);(2)【解析】【分析】(1)根据题意得:点A(2,3),B(1,1),C(5,3)关于y轴对称的对应点分别为A'(−2,3);B'(-1,1);C'(2)根据轴对称性,可得:PB1=PB,从而得到当点P在直线B1C上时,PC+PB最小,然后求出直线B1C的解析式,即可求解.【详解】解:(1)根据题意得:点A(2,3),B(1,1),C(5,3)关于y轴对称的对应点分别为A'(−2,3);B'(-1,1);C'(2)作点B关于x轴的对称点B1,连接B1C交x轴于点P,点P即为所求,理由:∵点B和点B1关于x轴的对称,∴PB1=PB,∴PC+PB=PC+PB1≤B1C,∴当点P在直线B1C上时,PC+PB最小,∵B(1,1),∴B1(1,-1),设直线B1C的解析式为y=kx+bk≠0∴k+b=−15k+b=3,解得:k=1∴直线B1C的解析式为y=x−2,∴当y=0时,x=2,∴P(2,0).【点睛】本题主要考查了坐标与图形,图形的变换——轴对称,最短线段问题,熟练掌握轴对称图形的性质是解题的关键.3、(1)y=20−6x;(2)16.4℃;(3)9千米【解析】【分析】(1)结合题意列关系式,即可得到答案;(2)结合(1)的结论,根据一次函数的性质计算,即可得到答案;(3)结合(1)的结论,通过求解一元一次方程,即可得到答案.【详解】(1)根据题意,得:y=20−6x;(2)结合(1)的结论,得山顶的温度大约是:20−0.6×6=20−3.6=16.4℃;(3)结合(1)的结论,得:20−6x=−34∴x=9∴飞机离地面的高度为9千米.【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.4、(1)m≠2;(2)m≠2且n=32【解析】【分析】(1)根据一次函数的定义得,2-m≠0,即可求得m的取值;(2)满足两个条件:2-m≠0且2n-3=0,即可得到m与n的取值.【详解】(1)由题意得,2-m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民法课件课教学课件
- 民法学课件教学课件
- 初中广东会考试卷及答案
- 新质生产力工业设备
- 新质生产力中考材料分析
- 新质生产力与教育家精神
- 施工临时用水施工方案
- 科技与新质生产力的关系
- 海事领域新质生产力感悟
- 新质生产力动图设计与制作技巧
- 九上道法知识点总结
- 英语人称代词和物主代词练习题(附答案)
- 2022中国国家职业分类大典
- 快递公司快递员操作流程预案
- 高中语文++《大学之道》课件++统编版高中语文选择性必修上册
- 2022-2023年度省职业院校学生专业技能大赛装配式建筑智能建造赛项竞赛规程
- 化工产品销售管理制度
- 闽2023-G-01先张法预应力高强混凝土管桩DBJT13-95
- 前列腺电切手术
- 掌握敏锐观察和细节把控的沟通技巧
- 贵州省安顺市平坝区第二中学2023-2024学年七年级数学第一学期期末考试模拟试题含解析
评论
0/150
提交评论