




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是(
)A.有一个实根 B.有两个不相等的实数根 C.有两个相等的实数根 D.没有实数根2、如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是(
)A. B. C. D.3、如图,四边形OABC是平行四边形,点A的坐标为A(3,0),∠COA=60°,D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,直线CD与y轴相交于点E,则点E的坐标为(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)4、已知反比例函数的图象如图所示,将该曲线绕点O顺时针旋转得到曲线,点N是曲线上一点,点M在直线上,连接、,若,的面积为,则k的值为(
)A. B. C. D.5、在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个 B.5个 C.6个 D.7个6、若实数满足,则的值是()A.1 B.-3或1 C.-3 D.-1或3二、多选题(6小题,每小题2分,共计12分)1、下面一元二次方程的解法中,不正确的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x两边同除以x,得x=12、如图,在边长为4的正方形ABCD中,点E,F分别是边BC,AB的中点,连接AE,DF交于点N,将△ABE沿AE翻折,得到△AGE,AG交DF于点M,延长EG交AD的延长线于点H,连接CG,ME,取ME的中点为点O,连接NO,GO.则以下结论正确的有(
)A. B.C.△GEC为等边三角形 D.3、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的为(
)A.① B.② C.③ D.④4、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA5、下列命题中的真命题是(
)A.矩形的对角线相等 B.对角线相等的四边形是矩形C.菱形的对角线互相垂直平分 D.对角线互相垂直的四边形是菱形6、下列四个命题中正确的命题有(
)A.两个矩形一定相似 B.两个菱形都有一个角是40°,那么这两个菱形相似C.两个正方形一定相似 D.有一个角相等的两个等腰梯形相似第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、一菱形的对角线长分别为24cm和10cm,则此菱形的周长为________,面积为________.2、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)3、中国“一带一路”倡议给沿线国家带来很大的经济效益.若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为______________.4、在数学活动课上,老师带领数学小组测量大树的高度.如图,数学小组发现大树离教学楼有5m,高1.4m的竹竿在水平地面的影子长1m,此时大树的影子有一部分映在地面上,还有一部分映在教学楼的墙上,墙上的影子离为2m,那么这棵大树高___________m.5、如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15°,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k=_____.6、如果关于的一元二次方程有实数根,那么的取值范围是___.7、如图,在矩形纸片ABCD中,AB=12,AD=5,P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠(1)当四边形ADPD′是正方形时,CD′的长为___.(2)当CD′的长最小时,PC的长为___.8、若函数是反比例函数,那么k的值是_____.四、解答题(6小题,每小题10分,共计60分)1、已知图中的曲线是反比例函数y=(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.2、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.3、(1)计算:(2)解方程:2(x﹣3)2=504、如图,在四边形中,,,..(1)求的长;(2)求四边形的面积.5、如图,在菱形ABCD中,AB=6,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.6、已知:a:b:c=3:4:5(1)求代数式的值;(2)如果3a﹣b+c=10,求a、b、c的值.-参考答案-一、单选题1、B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.2、D【解析】【分析】因为中心投影物体的高和影长成比例,正确的区分中心投影和平行投影,依次分析选项即可找到符合题意的选项【详解】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些,故选D【考点】本题考查了中心投影的概念,应用,利用中心投影的特点,理解中心投影物体的高和影长成比例是解题的关键.3、B【解析】【分析】作CE⊥x轴于点E,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,x),表示出D的坐标,将C、D两点坐标代入反比例函数的解析式,解关于x的方程求出x即可得到点C、D的坐标,进而求得直线CD的解析式,最后计算该直线与y轴交点坐标即可得出结果.【详解】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x,),把C、D的坐标代入y=得:k=x•x=(3+x)•,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),设直线CD解析式为:y=ax+b,则,解得,∴直线CD解析式为:,∴当x=0时,,∴点E的坐标为(0,).故选:B.【考点】本题主要考查了平行四边形的性质、运用待定系数法求函数的解析式以及含度角的直角三角形的性质.根据反比例函数图象经过C、D两点,得出关于x的方程是解决问题的关键.4、B【解析】【分析】将直线y=-x和曲线C2绕点O逆时针旋转45°,则直线y=-x与x轴重合,曲线C2与曲线C1重合,即可求解.【详解】解:∵将直线y=-x和曲线C2绕点O逆时针旋转45°,则直线y=-x与x轴重合,曲线C2与曲线C1重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M,N的对应点分别是M',N',过点N'作N'P⊥x轴于点P,连接ON',M'N'.∵MN=ON,∴M'N'=ON',M'P=PO,∴S△MON=S△M′ON′=2S△ON′P=2×=,∴(舍)或,故选B.【考点】本题考查了反比例函数系数k的几何意义,旋转的性质,体现了直观想象、逻辑推理的核心素养.5、C【解析】【分析】根据题意,得出ABC的三边之比,并在直角坐标系中找出与ABC各边长成比例的相似三角形,并在直角坐标系中无一遗漏地表示出来.【详解】解:ABC的三边之比为,如图所示,可能出现的相似三角形共有以下六种情况:所以使得△ADE∽△ABC的格点三角形一共有6个,故选:C.【考点】本题考察了在直角坐标系中画出与已知三角形相似的图形,解题的关键在于找出与已知三角形各边长成比例的三角形,并在直角坐标系中无一遗漏地表示出来.6、A【解析】【分析】设x2-3x=y.将y代入原方程得到关于y的一元二次方程y2+2y-3=0即可,解这个方程求出y的值,然后利用根的判别式检验即可.【详解】设x2-3x=y.将y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.当y=1时,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有两个不相等的实数根,当y=-3时,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,无解.故y=1,即x2-3x=1.故选A.【考点】本题考查了换元法解一元二次方程及一元二次方程根的判别式,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.二、多选题1、ACD【解析】【分析】各方程求出解,即可作出判断.【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,∵△=64+20=84,∴,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD.【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.2、ABD【解析】【分析】由正方形的性质可得,则易证,然后可判定A选项,由折叠的性质及平行线的性质可得B选项,由题意易得,进而根据三角形中线及等积法可判定D选项.【详解】解:∵四边形ABCD是正方形,∴,AD∥BC,∴,∵点E,F分别是边BC,AB的中点,∴,∴(SAS),∴,∵,∴,∴,由折叠性质可得,∴,∴,假设△GEC为等边三角形成立,则有,∴,∴,∴,∴与AB=2BE相矛盾,故假设不成立;由折叠的性质可知,∴,∴,∵ME的中点为点O,∴,∴;综上所述:正确的有ABD;故选ABD.【考点】本题主要考查全等三角形的性质与判定、正方形的性质、折叠性质及等积法,熟练掌握全等三角形的性质与判定、正方形的性质、折叠性质及等积法是解题的关键.3、BC【解析】【分析】根据相似三角形的定义,已知条件判定相似的三角形,再利用相似三角形的性质逐一判断选项即可.【详解】解:在正方形中,是的中点,是上一点,且,,..,.,,,..,.②③正确.故选:BC.【考点】本题考查了相似三角形的判定与性质,解题的关键是掌握判定定理有①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.4、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.5、AC【解析】【分析】根据菱形的判定与性质,矩形的判定和性质即可进行判断.【详解】解:A、矩形的对角线相等,是真命题,符合题意;B、对角线相等的平行四边形是矩形,是假命题,不符合题意;C、菱形的对角线互相垂直平分,是真命题,符合题意;D、对角线互相垂直平分的四边形是菱形,是假命题,不符合题意;故选AC.【考点】本题考查了,矩形的判定,菱形的判定与性质,解题的关键是掌握所学的定理.6、BC【解析】【分析】根据两个图形相似的性质及判定方法,对应边的比相等,对应角相等,两个条件同时满足来判断正误.【详解】解:A两个矩形对应角都是直角相等,对应边不一定成比例,所以不一定相似,故本小题错误;B两个菱形有一个角相等,则其它对应角也相等,对应边成比例,所以一定相似,故本小题正确;C两个正方形一定相似,正确;D有一个角相等的两个等腰梯形,对应角一定相等,但对应边的比不一定相等,故本小题错误.故选:BC.【考点】本题考查的是相似多边形的判定及菱形,矩形,正方形,等腰梯形的性质及其定义.三、填空题1、
52cm
120cm2【解析】【分析】根据菱形对角线互相平分且垂直得到边长,从而计算出周长,再根据面积公式计算出面积.【详解】解:∵菱形的对角线长分别为24cm和10cm,∴对角线的一半长分别为12cm和5cm,∴菱形的边长为:=13cm,∴菱形的周长为:13×4=52cm,面积为:×10×24=120cm2.故答案为:52cm,120cm2.【考点】此题主要考查学生对菱形的性质的理解及运用,属于基础题,关键是掌握菱形的面积等于对角线乘积的一半.2、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.3、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴该地区人均收入增长率为20%.故本题答案应为:20%.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.4、9【解析】【分析】根据同一时刻影长与物高成比例,先求出CE,再求AB即可.【详解】解:延长AD交BC延长线于E,根据同一时刻影长与物高成比例可得CE:CD=1:1.4,∵CD=2m,∴CE=m,∴BE=BC+CE=5+=m,∴BE:AB=1:1.4,∴AB=9m.故答案为:9.【考点】本题考查平行投影问题,掌握平行摄影的原理是同一时刻影长与物高成比例是解题关键.5、2﹣.【解析】【分析】连接OB,过点B作BE⊥x轴于点E,根据正方形的性质可得出∠AOB的度数及OB的长,结合三角形外角的性质可得出∠BDO=∠DBO,利用等角对等边可得出OD=OB,进而可得出点D的坐标,在Rt△BOE中,通过解直角三角形可得出点B的坐标,由点B,D的坐标,利用待定系数法可求出k,b的值,再将其代入(b﹣k)中即可求出结论.【详解】解:连接OB,过点B作BE⊥x轴于点E,如图所示.∵正方形ABCO的边长为,∴∠AOB=45°,OB=OA=2.∵OA与x轴正半轴的夹角为15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴点D的坐标为(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴点B的坐标为(,1).将B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案为:2﹣.【考点】此题考查的是正方形的性质、等腰三角形的判定、直角三角形的性质和求一次函数的解析式,掌握正方形的性质、等角对等边、30°所对的直角边是斜边的一半、勾股定理和利用待定系数法求一次函数解析式是解决此题的关键.6、【解析】【分析】由一元二次方程根与系数的关键可得:从而列不等式可得答案.【详解】解:关于的一元二次方程有实数根,故答案为:【考点】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键.7、
【解析】【分析】(1)根据四边形是正方形,得到从而得到再利用勾股定理求解即可得到答案;(2)如图:连接,运用矩形的性质和折叠的性质求出的最小值,再设,则,最后在中运用勾股定理解答即可【详解】解:(1)如图所示,∵四边形是正方形∴∵∴∵四边形ABCD是矩形∴,∠B=90°∴(2)如图:连接,当点在上时,有最小值.∵四边形是矩形,,,∴,,∴.由折叠性质,得,,∴的最小值.设,则.在中,,即,解得,∴的长为.故答案为:.【考点】本题主要考查矩形的性质和折叠的性质,正方形的性质,勾股定理,根据矩形的性质和折叠的性质确定的最小值成为解答本题的关键.8、0【解析】【分析】直接利用反比例函数的定义得出答案.【详解】∵函数是反比例函数,∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合题意舍去)∴k=0.故答案为:0.【考点】本题主要考查反比例函数的定义,掌握反比例函数的定义,是解题的关键.四、解答题1、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函数图象位于第一象限得到m﹣5大于0,即可求出m的范围;(2)根据反比例函数系数k的几何意义得出(m﹣5)=4,解得即可.【详解】解:(1)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面积为4,∴(m﹣5)=4,∴m=13.【考点】此题考查了反比例函数系数k的几何意义,反比例函数的图象与性质,根据系数k的几何意义得出(m−5)=4是解题的关键.2、(1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利×销售的千克数=总利润,列出方程解答即可;(3)利用每天总毛利润﹣税费﹣人工费﹣水电房租费=每天总纯利润,列出方程解答即可.(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x=10时,y=600,当x=11时,y=600﹣20=580,由题意得,,解得.所以销量y与盈利x元之间的关系为y=﹣20x+800,当x=17时,y=460,则每天的毛利润为17×460=7820元;(2)解:设每千克盈利x元,由(1)可得销量为(﹣20x+800)千克,由题意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顾客得到实惠,应选x=15,∴每千克应涨价15﹣10=5元;(3)解:设每千克盈利x元,由题意得x(﹣20x+800)﹣10%x(﹣20x+800)﹣1.5(﹣20x+800)﹣300=6000,解得:x1=25,x2,则每千克应涨价25﹣10=15元或10元.【考点】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键.3、(1)﹣;(2)x=8或﹣2.【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案.【详解】(1)原式=2﹣3﹣(﹣1)=﹣1﹣+1=﹣;(2)2(x﹣3)2=50(x﹣3)2=25,则x﹣3=±5,解得:x=8或﹣2.【考点】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.4、(1);(2)【解析】【分析】(1)作DM⊥BC,AN⊥DM垂足分别为M、N,易知四边形MNAB是矩形,分别在Rt△ADN中求出DN,利用含60°的直角三角形求CD即可;(2)由(1)可知,四边形的面积就是△DCM与梯形ADMB的面积和.【详解】解:(1)如图作DM⊥BC,AN⊥DM垂足分别为M、N.∵∠B=∠NMB=∠MNA=90°,∴四边形MNAB是矩形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《航空电气设备维修》试卷1及答案
- 初二数学月考试卷及答案
- 包头东河中考试卷及答案
- 新质生产力的核心资源有哪些
- 新质生产力公考解读
- 构建和谐医患关系论文
- 媒体视角的新质生产力解读
- 有关元旦晚会活动策划方案模板
- 学校老师个人年度教学工作方案怎么写
- 2025年医学信息学技术应用能力检测答案及解析
- 【灼鼎咨询】2024年自动驾驶行业知识报告(智能驾驶、新能源汽车、NOA)
- 检维修管理制度
- 服务业绿色低碳发展
- 教材研讨问题参考答案(课件)四年级上册科学教科版
- 2024年企业现场管理5S培训课件
- 综合测试01 识记默写(高考背诵课内分篇训练)高考语文一轮复习考点帮(北京专用)
- 北京导游资格考试外语口试题四
- 高中数学必修一第一、二章综合测试卷(含解析)
- 1.3集合的基本运算(第1课时)课件高一上学期数学人教A版
- 《学前儿童卫生与保健》高职全套教学课件
- 第4课 中国历代变法和改革 学案
评论
0/150
提交评论