版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省江山市中考数学真题分类(勾股定理)汇编必考点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,,根据图中图形面积之间的关系及勾股定理,可直接得到等式(
)A. B.C. D.2、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形3、如图,有一块直角三角形纸片,∠C=90°,AC=8,BC=6,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为(
)A.2 B. C. D.44、如图,在中,,两直角边,,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD长为(
)A. B. C. D.5、在中,,,,的对边分别是a,b,c,若,,则的面积是(
)A. B. C. D.6、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为(
)A. B.C. D.7、下面图形能够验证勾股定理的有()个A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,点在正方形的边上,若,,那么正方形的面积为_.2、图,在菱形ABCD中,,是锐角,于点E,M是AB的中点,连接MD,若,则的值为______.3、等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是_______cm.4、把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点在同一直线上.若,则____.5、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈=10尺).意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长____________尺.6、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部________m位置断裂.7、勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).8、如图1,邻边长为2和6的矩形分割成①,②,③,④四块后,拼接成如图2不重叠、无缝隙的正方形,则图2中的值为___________,图1中的长为_______.三、解答题(7小题,每小题10分,共计70分)1、勾股定理的证明方法是多样的,其中“面积法”是常用的方法.小丽发现:当四个全等的直角三角形如图摆放时,可以用“面积法”来证明勾股定理.请写出勾股定理的内容,并利用给定的图形进行证明.2、如图,在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.3、点P到y轴的距离与它到点A(-8,2)的距离都等于13,求点P的坐标。4、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.5、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6、如图,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,点D为BC的中点,.(1)求证:△ABC≌△DEB.(2)连结AE,若BC=4,直接写出AE的长.7、如图是三个全等的直角三角形纸片,且,按如图的三种方法分别将其折叠,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在角的两边重合,记折叠后不重叠部分面积分别为.(1)若,求的值.(2)若,求①单个直角三角形纸片的面积是多少?②此时的值是多少?-参考答案-一、单选题1、C【解析】【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角形的面积可得问题的答案.【详解】标记如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故选:C.【考点】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键.2、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可.【详解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.设三边长为a,a,∵,∴三角形ABC是直角三角形.综上所述:△ABC是等腰直角三角形.故选D.【考点】本题考查了等腰三角形的判定和勾股定理逆定理.此题关键是利用勾股定理的逆定理解答.3、B【解析】【分析】根据勾股定理求出AB的长,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【详解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故选:B.【考点】此题考查了勾股定理的应用,翻折的性质,熟记勾股定理的计算公式是解题的关键.4、A【解析】【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长.【详解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折叠的性质得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm−6cm=4cm,∠BED=90°,设CD=x,则BD=BC−CD=8−x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8−x)2,解得:x=3,∴CD=3cm,故选:A.【考点】本题考查了折叠的性质,勾股定理等知识;熟记折叠性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.5、A【解析】【分析】根据题意可知,的面积为,结合已知条件,根据完全平方公式变形求值即可.【详解】解:中,,,,所对的边分别为a,b,c,,∵,,∴,,故A正确.故选:A.【考点】本题主要考查了勾股定理,完全平方公式变形求值,解题的关键是将完全平方公式变形求出ab的值.6、B【解析】【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM爬行时距离最短;∵正方体盒子棱长为2,M为BC的中点,∴,∴,故选:B.【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.7、A【解析】【分析】分别计算图形的面积进行证明即可.【详解】解:A、由可得,故该项的图形能够验证勾股定理;B、由可得,故该项的图形能够验证勾股定理;C、由可得,故该项的图形能够验证勾股定理;D、由可得,故该项的图形能够验证勾股定理;故选:A.【考点】此题考查了图形与勾股定理的推导,熟记勾股定理的计算公式及各种图形面积的计算方法是解题的关键.二、填空题1、.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,,正方形的面积,故答案为.【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.2、【解析】【分析】延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.【详解】延长DM交CB的延长线于点H,四边形ABCD是菱形,,,,,,≌,,,,设,,,,,,或舍弃,,故答案为.【考点】本题考查了菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,正确添加辅助线,构造全等三角形解决问题是解决本题的关键.3、8【解析】【详解】如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案为8.4、.【解析】【分析】如图,先利用等腰直角三角形的性质求出,,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点作于,在中,,,,两个同样大小的含角的三角尺,,在中,根据勾股定理得,,,故答案为.【考点】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.5、13【解析】【分析】设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据勾股定理列方程求解即可.【详解】解:根据题意,设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据题意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案为:13.【考点】此题考查了勾股定理的实际应用,解题的关键是根据题意设出未知数,根据勾股定理列方程求解.6、6【解析】【分析】设,则,在中,利用勾股定理列方程,即可求解.【详解】解:如图,由题意知,,,设,则,在中,,即,解得,因此旗杆在离底部6m位置断裂.故答案为:6.【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键.7、m2+1【解析】【分析】2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】∵2m为偶数,∴设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦长为m2+1,故答案为:m2+1.【考点】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.8、
【解析】【分析】由等积法解得正方形的边长,再利用勾股定理解得图④的直角边FH的长,在图2中,利用正弦的定义解得,接着利用勾股定理解得,据此解得的值,最后利用解答即可.【详解】解:矩形的面积为:2×6=12正方形的边长如图1,如图2,设或(舍去)故答案为:,.【考点】本题考查正方形与矩形、图形的拼接,涉及勾股定理、正弦、余弦等知识,是重要考点,掌握相关知识是解题关键.三、解答题1、见解析【解析】【分析】多边形的面积可以等于边长为c的正方形面积加上两个直角三角形的面积,也可以等于两个直角梯形的面积和,由此得证.【详解】解:若直角三角形的两条直角边分别为a、b,斜边为c,则,如图,这个多边形的面积为整理得ab+c2=,故.【考点】此题考查了勾股定理的证明,正确掌握多边形的面积的计算方法及勾股定理的内容是解题的关键.2、见解析【解析】【分析】连接AM得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M为BC中点,∴BM=MC.∴AD2=AC2+BD2【考点】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.3、或.【解析】【分析】由P到y轴的距离为13,可得P点横坐标为13或-13,设出P点坐标,然后利用两点间的距离公式建立方程求解即可.【详解】解:∵点P到y轴的距离为13,∴P点横坐标为13或-13当P点横坐标为13时,设P(13,a)由点P到点A(-8,2)的距离等于13得:整理得,无解,故此种情况不存在;当P点横坐标为-13时,设P(-13,a)同理可得整理得,解得或∴点P的坐标为或.【考点】本题考查直角坐标系中两点间的距离公式与解一元二次方程,熟练掌握公式建立方程是解题的关键.4、84.【解析】【详解】解:作AD⊥BC于D,如图所示:设BD=x,则.
在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,
解之得:.
∴.
∴.5、速度为30米每秒【解析】【分析】根据勾股定理求得的长度,再根据速度等于路程除以时间即可求得敌方汽车的速度.【详解】,,米每秒,答:敌方汽车的速度为30米每秒.【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.6、(1)见解析;(2)【解析】【分析】(1)根据平行可得∠DBE=90°,再由HL定理证明直角三角形全等即可;(2)构造,利用矩形性质和勾股定理即可求出AE长.【详解】(1)∵AC∥BE,∴∠C+∠DBE=180°.∴∠DBE=180°-∠C=180°-90°=90°.∴△ABC和△DEB都是直角三角形.∵点D为BC的中点,,∴AC=DB.
∵AB=DE,∴Rt△ABC≌Rt△DEB(HL).(2).过程如下:连接AE、过A点作AH⊥BE,∵∠C=90°,∠DBE=90°.∴,,∴AH=BC=4,,∴,在中,.【考点】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH=BC,从而利用勾股定理求AE.7、(1)(2)①36;②【解析】【分析】(1)设DE=CE=x,则BE=4-x,依据S△ABE=AB×DE=BE×AC,即可得到x的值,进而得出S1的值.(2)①如图1,依据S△ABE=AB×DE=BE×AC,即可得到DE=x,进而得出S1=x2;如图2,依据S△ABN=AB×HN=AN×BC,即可得到EN=x,进而得出S2=x2,再根据S1+S2=13,即可得到x2=6,进而得出单个直角三角形纸片的面积.②如图3,由折叠可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,则S3=S△CMF=S△ACM,所以S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新模拟考试安全员试题及答案
- 产房护理工作应急预案(3篇)
- 2025年多省公务员联考公安基础知识考试真题及答案
- 2025年人力资源师(初级)劳动关系风险防范能力测试考试试题及答案
- “班级之星”在班级管理中的应用
- 2025年山东政治考试真题及答案
- 2025年机场安检考试题一及答案
- 职业培训合同中的补偿条款
- 军官考试试卷数学及答案
- 电力施工安全措施规范
- 2025江苏苏州市昆山市锦溪镇招聘编外辅助人员16人笔试考试备考题库及答案解析
- 租用铲车协议合同模板
- 压力管道安装记录文本表格(完整版)
- 口腔门诊医疗器械质量管理制度
- 2025年网球培训考试题库及答案
- 2025年党建纪检岗笔试试题及答案
- 通信卫星热控系统仿真修正与轨道验证研究
- 1.《2025年制造业数字化转型新型学徒技能考核试卷》
- 《红岩》第07章+带读课(课件)
- 车载饮水机行业深度研究报告
- 税务注销代理协议合同
评论
0/150
提交评论