考点解析-河北石家庄市第二十三中7年级数学下册第四章三角形专项测评试卷_第1页
考点解析-河北石家庄市第二十三中7年级数学下册第四章三角形专项测评试卷_第2页
考点解析-河北石家庄市第二十三中7年级数学下册第四章三角形专项测评试卷_第3页
考点解析-河北石家庄市第二十三中7年级数学下册第四章三角形专项测评试卷_第4页
考点解析-河北石家庄市第二十三中7年级数学下册第四章三角形专项测评试卷_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北石家庄市第二十三中7年级数学下册第四章三角形专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在正方形ABCD中,E,F分别为AD,CD上的点,且AE=CF,则下列说法正确的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠22、如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得,那么点A与点B之间的距离不可能是()A. B. C. D.3、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边4、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.85、一个三角形的两边长分别是3和5,则它的第三边可能为()A.2 B.4 C.8 D.116、如图是5×5的正方形网格中,以D,E为顶点作位置不同的格点的三角形与△ABC全等,这样格点三角形最多可以画出()A.2个 B.3个 C.4个 D.5个7、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为()A.1个 B.2个 C.3个 D.4个8、如图,平分,,连接,并延长,分别交,于点,,则图中共有全等三角形的组数为()A. B. C. D.9、如图,点C在∠AOB的OB边上,用尺规作出了∠NCE=∠AOD,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧10、如图,D为∠BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是80,则△ABE的面积是________.2、如图,点C是线段AB的中点,.请你只添加一个条件,使得≌.(1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定与全等的理由是______.3、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是_____.4、如图,,,,则、两点之间的距离为______.5、在平面直角坐标系中,点B(0,4),点A为x轴上一动点,连接AB.以AB为边作等腰Rt△ABE,(B、A、E按逆时针方向排列,且∠BAE为直角),连接OE.当OE最小时,点E的纵坐标为______.6、如图,中,,,是的中点,的取值范围为________.7、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于_______8、如图,△ABC≌△DEF,BE=a,BF=b,则CF=___.9、如图,在中,已知点,,分别为,,的中点,且,则阴影部分的面积______.10、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).三、解答题(6小题,每小题10分,共计60分)1、如图,点、、、在同一直线上,,,.求证:.2、已知∠ACD=90°,MN是过点A的直线,AC=DC,且DB⊥MN于点B,如图易证BD+ABCB,过程如下:解:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)当MN绕A旋转到如图(2)位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并给予证明.(2)当MN绕A旋转到如图(3)位置时,BD、AB、CB满足什么样关系式,请直接写出你的结论.3、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.4、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.5、如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a−t)2+|b−t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,当t=2时,求点Q的坐标.6、如图,点E、B在线段AB上,AE=DB,BC=EF,BC∥EF,求证:AC=DF.-参考答案-一、单选题1、C【分析】由“SAS”可证△ABE≌△CBF,可得∠AEB=∠2,即可求解.【详解】解:∵四边形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明三角形全等是解题的关键.2、D【分析】首先根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出AB的取值范围,然后再判断各选项是否正确.【详解】解:∵PA=100m,PB=90m,∴根据三角形的三边关系得到:,∴,∴点A与点B之间的距离不可能是20m,故选A.【点睛】本题主要考查了三角形的三边关系,掌握三角形两边只差小于第三边、两边之和大于第三边是解题的关键.3、C【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.4、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出的面积.【详解】∵AD是BC上的中线,∴,∵CE是中AD边上的中线,∴,∴,即,∵的面积是2,∴.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.5、B【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边,设第三边为,可得,再解即可.【详解】设第三边为,由题意得:,.故选:B.【点睛】此题主要考查了三角形的三边关系:掌握第三边大于已知的两边的差,而小于两边的和是解题的关键.6、C【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.【详解】根据题意,运用“SSS”可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点,如图.故选C.【点睛】本题考查三角形全等的判定方法,解答本题的关键是按照顺序分析,要做到不重不漏.7、C【分析】由全等三角形的判定及性质对每个结论推理论证即可.【详解】∵∴∴又∵,∴∴故①正确∵∴由三角形外角的性质有则故②正确作于,于,如图所示:则°,在和中,,∴,∴,在和中,∴,∴∴平分故④正确假设平分则∵∴即由④知又∵为对顶角∴∴∴∴在和中,∴即AB=AC又∵故假设不符,故不平分故③错误.综上所述①②④正确,共有3个正确.故选:C.【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.8、C【分析】求出∠BAD=∠CAD,根据SAS推出△ADB≌△ADC,根据全等三角形的性质得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根据ASA推出△AED≌△AFD,根据全等三角形的性质得出AE=AF,根据SAS推出△ABF≌△ACE,根据AAS推出△EDB≌△FDC即可.【详解】解:图中全等三角形的对数有4对,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB−∠EDB=∠ADC−∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故选:C.【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.9、D【分析】根据作一个角等于已知角的步骤即可得.【详解】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.10、D【分析】利用AAS证明△CDE≌△BDF,可判断①④正确;再利用HL证明Rt△ADE≌Rt△ADF,可判断②正确;由∠BAC=∠EDF,∠FDE=∠BDC,可判断③正确.【详解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),故①正确;∴CE=BF,在Rt△ADE与Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.二、填空题1、20【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是80,∴S△ABE=×80=20.故答案为:20.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.2、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可.【详解】解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案为:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵点C是线段AB的中点,∴AC=BC∵∴∴≌(SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.3、##【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.【详解】解:在和中,,,,则的面积是,故答案为:.【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.4、55【分析】根据题意首先证明△AOB和△DOC全等,再根据全等三角形对应边相等即可得出答案.【详解】解:,,,即,在和中,,≌,.故答案为:.【点睛】本题主要考查全等三角形的应用以及两点之间的距离,解题的关键是掌握全等三角形对应边相等.5、-2【分析】过E作EF⊥x轴于F,由三垂直模型,得EF=OA,AF=OB,设A(a,0),可求得E(a+4,a),点E在直线y=x-4上,当OE⊥CD时,OE最小,据此求出坐标即可.【详解】解:如图,过E作EF⊥x轴于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取点C(4,0),点D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴点E在直线CD上,当OE⊥CD时,OE最小,此时△EFO和△ECO为等腰Rt△,∴OF=EF=2,此时点E的坐标为:(2,-2).故答案为:-2【点睛】本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置.6、【分析】延长AD到E,使,连接,证,得到,在中,根据三角形三边关系定理得出,代入求出即可.【详解】解:延长AD到E,使,连接,如图所示:∵AD是BC边上的中线,∴,在和中,,∴,∴,在中,,∴,∴,故答案为:.【点睛】本题考查了全等三角形的性质和判定,三角形的三边关系定理的应用,熟练掌握相关基本性质是解题的关键.7、15【分析】连接DF,根据AE=ED,BD=3DC,可得,,,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF,∵AE=ED,∴,,∵BD=3DC,∴,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴,解得:.故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到,,,是解题的关键.8、##【分析】先利用线段和差求EF=BE﹣BF=a-b,根据全等三角形的性质BC=EF,再结合线段和差求出FC可得答案.【详解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案为:.【点睛】本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.9、【分析】根据三角形中线性质,平分三角形面积,先利用AD为△ABC中线可得S△ABD=S△ACD,根据E为AD中点,,根据BF为△BEC中线,即可.【详解】解:∵AD为△ABC中线∴S△ABD=S△ACD,又∵E为AD中点,故,∴,∵BF为△BEC中线,∴cm2.故答案为:1cm2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.10、不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.三、解答题1、见解析【分析】由“SAS”可证△ABF≌△CDE,可得∠AFB=∠CED,可得结论.【详解】解:∵,∴,即:,∵,∴,在和中,,∴.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,证明三角形全等是解题的关键.2、(1)AB-BD=CB,证明见解析.(2)BD-AB=CB,证明见解析.【分析】(1)仿照图(1)的解题过程即可解答.过点C作CE⊥CB于点C,与MN交于点E,根据同角(等角)的余角相等可证∠BCD=∠ACE及∠CAE=∠D,由ASA可证△ACE≌△DCB,然后由全等三角形的对应边相等可得:AE=DB,CE=CB,从而确定△ECB为等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解题思路同(1),过点C作CE⊥CB于点C,与MN交于点E,根据等角的余角相等及等式的性质可证∠BCD=∠ACE及∠CAE=∠D,由ASA可证△ACE≌△DCB,然后由全等三角形的对应边相等可得:AE=DB,CE=CB,从而确定△ECB为等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【详解】解:(1)AB-BD=CB.证明:如图(2)过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AB-AE,∴BE=AB-BD,∴AB-BD=CB.(2)BD-AB=CB.如图(3)过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE-AB,∴BE=BD-AB,∴BD-AB=CB.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质等.注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.3、见解析【分析】连接,,再根据三角形的三边关系即可得出结论.【详解】连接,,,,.当且仅当CD过圆心O时,取“=”号,.【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论