(完整版)数学初中苏教七年级下册期末真题模拟试题(比较难)解析_第1页
(完整版)数学初中苏教七年级下册期末真题模拟试题(比较难)解析_第2页
(完整版)数学初中苏教七年级下册期末真题模拟试题(比较难)解析_第3页
(完整版)数学初中苏教七年级下册期末真题模拟试题(比较难)解析_第4页
(完整版)数学初中苏教七年级下册期末真题模拟试题(比较难)解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)数学初中苏教七年级下册期末真题模拟试题(比较难)解析一、选择题1.计算的正确结果是()A. B. C. D.2.如图,已知两直线l1与l2被第三条直线l3所截,则下列说法中不正确的是()A.∠2与∠4是邻补角 B.∠2与∠3是对顶角C.∠1与∠4是内错角 D.∠1与∠2是同位角3.若方程组的解满足,则的值为()A. B.﹣1 C. D.14.若x<y,则下列不等式中一定成立的是()A.x2<y2 B.-3x<-3y C.> D.1-x>1-y5.已知关于的不等式组,无解,则的取值范围是()A.≤2 B.≥2 C.<2 D.>26.下列命题中,可判断为假命题的是()A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.两条直线被第三条直线所截,同位角相等C.同旁内角互补,两直线平行D.直角三角形两个锐角互余7.任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数,再将这个新数按上述方式重新排列,再相减,….这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.该“卡普雷卡尔黑洞数”为()A.594 B.459 C.954 D.4958.下列说法中,正确的个数为()①三角形的高、中线、角平分线都是线段②三角形的外角大于任意一个内角③△ABC中,∠A=2∠B=3∠C,则△ABC是直角三角形④若a、b、c均大于0,且满足a+b>c,则长为a、b、c的三条线段一定能组成三角形A.1 B.2 C.3 D.4二、填空题9.计算:=______.10.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点的坐标满足,那么点一定在第二象限.其中正确命题的序号为___.11.在同一平面内,正六边形和正方形如图所示放置,则等于____度.12.二次三项式在实数范围内分解因式的结果是______.13.已知方程组满足,则k的值为___________.14.如图,在一块长为20m,为10m的长方形草地上,修建两条宽为2m的长方形小路,则这块草地的绿地面积(图中空白部分)为___m2.15.在△ABC中,若AB=3,BC=5,则AC的取值范围是___.16.如图,与的大小关系为:______.17.计算:(1)(2)(3)(4)18.因式分解(1)(2)(3)19.解方程组(1)(2)20.解下列不等式或不等式组:(1)(2)三、解答题21.完成下面的证明:已知:如图,E是∠CDF平分线上一点,BEDF交CD于点N,ABCD.求证:∠ABE﹦2∠E.证明:∵BEDF,∴∠CNE=∠,()∠E=∠,()∵DE平分∠CDF.∴∠CDF=2∠EDF;∴∠CNE=2∠E.又∵ABCD,∴∠ABE=∠,∴∠ABE﹦2∠E.22.某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台.(1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?23.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(列方程组解应用题)(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)则该公司共有种购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,最大利润是元.24.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.25.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数.(2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示).(3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示).【参考答案】一、选择题1.D解析:D【分析】根据幂的乘方法则计算即可解答.【详解】解:(a2)3=a6,故选:D.【点睛】本题考查了幂的乘方法则,理清指数的变化是解题的关键.2.C解析:C【分析】根据对顶角定义可得B说法正确,根据邻补角定义可得A说法正确,根据同位角定义可得D说法正确,根据内错角定义可得C错误.【详解】解:A、∠2与∠4是邻补角,说法正确;B、∠2与∠3是对顶角,说法正确;C、∠1与∠4是同旁内角,故原说法错误;D、∠1与∠2是同位角,说法正确;故选:C.【点睛】此题主要考查了对顶角、邻补角、同位角、内错角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形.3.A解析:A【分析】根据等式的性质,可得关于k的方程,根据解方程,可得答案.【详解】,①-②得:可得:,因为,所以,解得:,故选A.【点睛】本题考查了二元一次方程组的解,整体代入的出关于k的方程是解题关键.4.D解析:D【分析】利用不等式的基本性质逐一判断即可得到答案.【详解】解:不能两边平方,所以并不一定成立,故A错误,所以B错误,所以C错误,所以D正确.故选D.【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题的关键.5.B解析:B【分析】根据不等式组无解的条件即可求出的取值范围.【详解】解:由于不等式组无解根据“大大小小则无解”原则,得出故选:B.【点睛】本题考查了由一元一次不等式组的解集求参数,求不等式组的公共解,要遵守以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.B解析:B【分析】利用直线的位置关系、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】A.在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;B.两条平行直线被第三条直线所截,同位角相等,故错误,是假命题;C.同旁内角互补,两直线平行,正确,是真命题;D.直角三角形两个锐角互余,正确,是真命题.故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解直线的位置关系、平行线的性质及直角三角形的性质,难度不大.7.D解析:D【分析】任选一个符合要求的三位数,按照定义式子展开,化简到出现循环即可.【详解】解:若选的数为325,则用532﹣235=297,以下按照上述规则继续计算:972﹣279=693,963﹣369=594,954﹣459=495,954﹣459=495,….故“卡普雷卡尔黑洞数”是495.故选:D.【点睛】本题考查了新定义,以及数字类规律探究,根据新定义经过计算发现规律是解答本题的关键.8.A解析:A【分析】①三角形的高、中线、角平分线判断即可;②根据三角形的外角的性质即可判断;③利用三角形的内角和是180°求得各角的度数即可判断,④根据三角形三边关系解答.【详解】解:①三角形的高、中线、角平分线都是线段,正确;②三角形的外角大于任意一个与它不相邻的内角,错误;③△ABC中,∠A=2∠B=3∠C,则△ABC不是直角三角形,错误;④满足a+b>c且a<c,b<c的a、b、c三条线段一定能组成三角形,故错误;故选A.【点睛】本题主要考查的是三角形的外角的性质与内角和定理、三角形的高线,掌握三角形的外角的性质与内角和定理以及三角形的高线特点是解题的关键.二、填空题9.【分析】根据整式的乘法运算法则即可求解.【详解】=故答案为:.【点睛】此题主要考查整式的乘法,解题的关键是熟知单项式乘单项式的运算法则.10.①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点的坐标满足,则x与y异号,那么点P在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.11.150【分析】求出正六边形和正方形的内角的度数,这两个角的度数与的和是,即可求得答案;【详解】正六边形的内角是:,正方形的角是,则.故答案为:150.【点睛】本题主要考查了多边形的内角与外角,准确计算是解题的关键.12.【分析】先提出负号,把括号内多项式分两组4y2-8xy两项一组,x2单独一组,把两项一组配方4y2-8xy+4x2-4x2=4(y-x)2-4x2,把-4x2与x2合并得-3x2,括号内变为,再因式分解即可.【详解】,,,,.故答案为:【点睛】本题考查在实数范围内因式分解问题,掌握两数和与差完全平方公式与平方差公式,会灵活运用公式解决问题,特别是三项式因式分解,一般要考虑用两数和与差完全平方公式,而且先配方,在因式分解是解题关键.13.【分析】利用整体思想,将两个方程相加,再整体代入解题即可.【详解】①+②,即∴k=7故答案为:.【点睛】本题考查二元一次方程组,是重要考点,难度较易,掌握相关知识是解题关键.14.【分析】直接利用平移道路的方法得出草地的绿地面积=(20−2)×(10−2),进而得出答案.【详解】由图象可得,这块草地的绿地面积为:(20﹣2)×(10﹣2)=144(m2).故答案为:144.【点睛】此题主要考查了生活中的平移现象,正确平移道路是解题关键.15.【分析】根据三角形的三边关系,直接求解即可.【详解】在△ABC中,AB=3,BC=5,,即,解得.故答案为:.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角解析:【分析】根据三角形的三边关系,直接求解即可.【详解】在△ABC中,AB=3,BC=5,,即,解得.故答案为:.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于两边之差,小于两边之和.16.>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角解析:>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角形外角的性质并根据图形构造出角之间的关系是解题的关键.17.(1)-18;(2);(3);(4)【解析】【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用平方计算,即可得到结果;(2)原式第一项利用幂的乘方计算法则计解析:(1)-18;(2);(3);(4)【解析】【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用平方计算,即可得到结果;(2)原式第一项利用幂的乘方计算法则计算,第二项利用同底数幂的乘法法则计算,最后一项利用同底数幂的除法运算法则计算,合并后即可得到结果;(3)原式利用平方差公式化简,再利用完全平方公式展开,即可得到结果;(4)原式利用积的乘方的逆运算,平方差公式,完全平方公式,即可得到结果.【详解】解:(1)原式;(2)原式;(3)原式,,;(4)原式,.故答案为(1)-18;(2);(3);(4)【点睛】本题考查整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,零指数幂,负整数指数幂,以及合并同类项法则,熟练掌握公式及法则是解题的关键.18.(1);(2);(3).【分析】(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因式x,进而利用完全平方公式分解因式即可.【详解】(1)原式;解析:(1);(2);(3).【分析】(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因式x,进而利用完全平方公式分解因式即可.【详解】(1)原式;(2)原式.(3)原式=.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.19.(1);(2).【分析】(1)由①+②,可求得,再代入②,可求出,即可求解;(2)由①+②,可求出,再代入,求出,即可求解.【详解】解:(1),由①-②×2,得:,将代入②,得:解析:(1);(2).【分析】(1)由①+②,可求得,再代入②,可求出,即可求解;(2)由①+②,可求出,再代入,求出,即可求解.【详解】解:(1),由①-②×2,得:,将代入②,得:,解得:,所以原方程组的解为;(2),由①+②,得:,解得:,将代入①,得:,解得:,所以原方程组的解为.【点睛】本题主要考查了解二元一次方程组,熟练掌握用加减消元法,代入消元法解二元一次方程组是解题的关键.20.(1);(2)【分析】(1)按照先去分母,然后去括号,移项,合并同类项,化系数为1的步骤解不等式即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),去分母解析:(1);(2)【分析】(1)按照先去分母,然后去括号,移项,合并同类项,化系数为1的步骤解不等式即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),去分母得:,去括号得:,移项得:,合并得:,化系数为1得:;(2),解不等式①得:,解不等式②得:,,∴不等式组的解集是.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.CDF;两直线平行,同位角相等;EDF;两直线平行,内错角相等;CNE.【分析】由BE∥DF,得到,由AB∥CD,得到结合角平分线的性质即可解答.【详解】证明:∵BE∥DF,∴CDF(解析:CDF;两直线平行,同位角相等;EDF;两直线平行,内错角相等;CNE.【分析】由BE∥DF,得到,由AB∥CD,得到结合角平分线的性质即可解答.【详解】证明:∵BE∥DF,∴CDF(两直线平行,同位角相等),∠E=∠EDF(两直线平行,内错角相等),∵平分,∴EDF;∴又∵AB∥CD∴CNE.故填:CDF;两直线平行,同位角相等;EDF;两直线平行,内错角相等;CNE.【点睛】本题考查的是平行线的性质、角平分线的定义,灵活运用平行线的性质是解答本题的关键.22.(1)至少购买丙种电视机10台;(2)方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台;方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台;方案三:解析:(1)至少购买丙种电视机10台;(2)方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台;方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台;方案三:购进甲、乙、丙三种不同型号的电视机分别为48台、48台、12台.【解析】【分析】(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108﹣5x)台,根据“购进三种电视机的总金额不超过147000元”作为不等关系列不等式即可求解;(2)根据“甲种电视机的台数不超过乙种电视的台数”作为不等关系列不等式4x≤108﹣5x,结合着(1)可求得x的取值范围,求x的正整数解,即可求得购买方案.【详解】解:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108﹣5x)台,根据题意,得1000×4x+1500×(108﹣5x)+2000x≤147000解这个不等式得x≥10因此至少购买丙种电视机10台;(2)甲种电视机4x台,购买乙种电视机(108﹣5x)台,根据题意,得4x≤108﹣5x解得x≤12又∵x是正整数,由(1)得10≤x≤12∴x=10,11,12,因此有三种方案.方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)型汽车每辆进价为万元,型汽车每辆进价为万元;(2)3;(3)【分析】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进型汽车辆,解析:(1)型汽车每辆进价为万元,型汽车每辆进价为万元;(2)3;(3)【分析】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进型汽车辆,型汽车辆,依题意列出二元一次方程,根据为正整数,求得整数解,即可求得方案数(3)根据(2)的方案以及题意,分别计算利润,比较之即可求得最大利润.【详解】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意,得解得答:型汽车每辆进价为万元,型汽车每辆进价为万元.(2)设购进型汽车辆,型汽车辆,依题意得为正整数,或或有3种购买方案故答案为:3(3)该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,方案1,获得的利润为:(元)方案2,获得的利润为:(元)方案3,获得的利润为:(元)购进型汽车2辆,型汽车辆时,获利最大,最大利润是元故答案为:【点睛】本题考查了二元一次方程组的应用,找准等量关系列出方程组是解题的关键.24.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.25.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根据三角形内角和定理可以算出∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论