版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期中测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、一元二次方程,用配方法解该方程,配方后的方程为()A. B.C. D.2、如图,点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点.则下列说法:①若,则四边形EFGH为矩形;②若,则四边形EFGH为菱形;③若AC与BD互相垂直且相等,则四边形EFGH是正方形;④若四边形EFGH是平行四边形,则AC与BD互相平分.其中正确的个数是(
)A.1 B.2 C.3 D.43、从-3,0,1,2这四个数中任取一个数作为一元二次方程的系数的值,能使该方程有实数根的概率是(
)A. B. C. D.4、关于x的方程x(x﹣1)=3(x﹣1),下列解法完全正确的是()ABCD两边同时除以(x﹣1)得,x=3整理得,x2﹣4x=﹣3∵a=1,b=﹣4,c=﹣3,b2﹣4ac=28∴x==2±整理得,x2﹣4x=﹣3配方得,x2﹣4x+2=﹣1∴(x﹣2)2=﹣1∴x﹣2=±1∴x1=1,x2=3移项得,(x﹣3)(x﹣1)=0∴x﹣3=0或x﹣1=0∴x1=1,x2=3A.A B.B C.C D.D5、如图,在正方形中,,E为对角线上与A,C不重合的一个动点,过点E作于点F,于点G,连接.下列结论:①;②;③;④的最小值为3.其中正确结论的个数有(
)A.1个 B.2个 C.3个 D.4个6、如图,菱形的顶点在直线上,若,,则的度数为(
)A. B. C. D.7、用配方法解方程时,原方程应变形为(
)A. B. C. D.二、多选题(3小题,每小题2分,共计6分)1、下列关于x的方程没有实数根的是(
)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=02、如图,分别以点A、B为圆心,同样长度为半径作圆弧,两弧相交于点C、D.连结AC、BC、AD、BD,则四边形ADBC一定是(
)A.矩形 B.菱形 C.正方形 D.平行四边形3、平行四边形ABCD的对角线相交于点O,分别添加下列条件使得四边形ABCD是矩形的条件有(
)是菱形的条件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、从分别标有A、B、C的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A,一根标有C的概率是__________.2、已知一元二次方程ax2+bx+c=0(a≠0),下列结论:①若方程两根为-1和2,则2a+c=0;②若b>a+c,则方程有两个不相等的实数根;③若b=2a+3c,则方程有两个不相等的实数根;④若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立.其中结论正确的序号是__________.3、如果关于的一元二次方程的一个解是,那么代数式的值是___________.4、为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.5、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.6、如图,在菱形ABCD中,AB的垂直平分线交对角线BD于点F,垂足为点E,连接AF、AC,若∠DCB=70°,则∠FAC=______.7、设分别为一元二次方程的两个实数根,则____.8、已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.9、对于任意实数a、b,定义一种运算:,若,则x的值为________.10、若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于_____.四、解答题(6小题,每小题10分,共计60分)1、如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.2、解方程:2(x-3)=3x(x-3).3、2021年2月10日,“天问一号”火星探测器抵达火星轨道,成为中国首颗人造火星卫星.某学校组织首届“航天梦
报国情”航天知识竞赛活动,九年级全体同学参加了“航天知识竞赛”,为了解本次竞赛的成绩,小彬进行了下列统计活动.收集数据:现随机抽取九年级40名同学“航天知识竞赛”的成绩(单位:分)如下:75
85
75
80
75
75
85
70
75
90
75
80
80
70
75
80
85
80
80
9595
75
90
80
70
80
95
85
75
85
80
80
70
80
75
80
80
55
70
60整理分析小彬按照如下表格整理了这组数据,并绘制了如下的频数直方图.九年级40名同学“航天知识竞赛”成绩频数分布表成绩x/分频数(人数)11______18______(1)请将图表中空缺的部分补充完整,并直接写出这组数据的中位数.(2)活动组委会决定,给“航天知识竞赛”成绩在90分及以上的同学授予“小宇航员”称号.根据上面的统计结果,估计该校九年级840人中约有多少人将获得“小宇航员”称号.(3)本次活动中获得“小宇航员”称号的小颖得到了A,B,C,D四枚纪念章(除图案外完全相同),如上图所示,她将这四枚纪念章背面朝上放在桌面上,从中随机选取两枚送给小彬,求小颗送给小彬的两枚纪念章中恰好有一枚印有“天问一号”图案的概率.4、小军和小刚两位同学在学习”概率“时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次试验,实验的结果如下:向上点数123456出现次数79682010(1)计算“2点朝上”的频率和“5点朝上”的频率.(2)小军说:“根据实验,一次实验中出现3点朝上的概率是”;小军的这一说法正确吗?为什么?(3)小刚说:“如果掷600次,那么出现6点朝上的次数正好是100次.”小刚的这一说法正确吗?为什么?5、(1)解方程:.(2)解方程:.6、发现:四个连续的整数的积加上是一个整数的平方.验证:(1)的结果是哪个数的平方?(2)设四个连续的整数分别为,试证明他们的积加上是一个整数的平方;延伸:(3)有三个连续的整数,前两个整数的平方和等于第三个数的平方,试求出这三个整数分别是多少.-参考答案-一、单选题1、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】∵x2−2x−m=0,∴x2−2x=m,∴x2−2x+1=m+1,∴(x−1)2=m+1.故选D.【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用.2、A【解析】【分析】先根据三角形中位线定理证明四边形EFGH是平行四边形,然后根据菱形,矩形,正方形的判定进行逐一判断即可.【详解】解:∵点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,∴EH是△ABD的中位线,∴,,同理,∴EH=GF,GH=EF,∴四边形EFGH是平行四边形,①若AC=BD,则EH=GF=GH=EF,则四边形EFGH是菱形,故①错误;②若AC⊥BD,则EF⊥EH,∴平行四边形EFGH是矩形,故②错误;③若AC与BD互相垂直且相等,结合①②的判断可知四边形EFGH是正方形,故③正确;④若四边形EFGH是平行四边形,并不能推出AC与BD互相平分,故④错误,故选A.【考点】本题主要考查了中点四边形,三角形中位线定理,熟知中点四边形的知识是解题的关键.3、B【解析】【分析】根据一元二次方程根的判别式的意义得到△=32+4a≥0且,解得a≥且,然后根据概率公式求解.【详解】解:当△=32+4a≥0且时,一元二次方程有实数根,所以a≥且,从-3,0,1,2这4个数中任取一个数,满足条件的结果数有,所以所得的一元二次方程中有实数根的概率是.故选:.【考点】正确理解列举法求概率的条件以及一元二次方程根的判定方法是解决问题的关键.用到的知识点为:概率=所求情况数与总情况数之比.4、D【解析】【分析】A.不能两边同时除以(x﹣1),会漏根;B.化为一般式,利用公式法解答;C.利用配方法解答;D.利用因式分解法解答【详解】解:A.不能两边同时除以(x﹣1),会漏根,故A错误;B.化为一般式,a=l,b=﹣4,c=3,故B错误;C.利用配方法解答,整理得,x2﹣4x=﹣3,配方得,x2﹣4x+22=1,故C错误;D.利用因式分解法解答,完全正确,故选:D【考点】本题考查解一元二次方程,涉及公式法、配方法、因式分解法等知识,是重要考点,掌握相关知识是解题关键.5、C【解析】【分析】延长,交于点,交于点,连接,交于点,先根据正方形的性质、三角形全等的判定定理与性质得出,再根据矩形的判定与性质可得,由此可判断①;先根据三角形全等的性质可得,再根据矩形的性质可得,然后根据等腰三角形的性质可得,由此可判断③;根据直角三角形的性质可得,从而可得,由此可判断②;先根据垂线段最短可得当时,取得最小值,再解直角三角形可得的最小值,从而可得的最小值,由此可判断④.【详解】解:如图,延长,交于点,交于点,连接,交于点,四边形是正方形,,,在和中,,,,,四边形是矩形,,,即结论①正确;,,,即结论③正确;,,,,即,结论②正确;由垂线段最短可知,当时,取得最小值,此时在中,,又,的最小值与的最小值相等,即为,结论④错误;综上,正确的结论为①②③,共有3个,故选:C.【考点】本题考查了正方形的性质、三角形全等的判定定理与性质、解直角三角形等知识点,通过作辅助线,构造全等三角形和直角三角形是解题关键.6、B【解析】【分析】由∠MCN=180°,可求出∠BCD的度数,根据菱形的性质可得∠A的度数,再由AB=AD,进而可求出∠ABD的度数.【详解】∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD.∵∠1=50°,∠2=20°,∴∠BCD=180°-50°-20°=110°∴∠A=110°.∵AB=AD,∴∠ABD=∠ADB=(180°-110°)÷2=35°.故选B.【考点】本题考查了菱形的性质、三角形内角和定理的运用以及等腰三角形的判定和性质,熟记菱形的各种性质是解题的关键.7、D【解析】【分析】移项,配方,变形后即可得出选项.【详解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故选:D.【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键.二、多选题1、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果.【详解】解:A、x2-x+1=0,,方程没有实数根,此选项符合题意;B、x2+x+1=0,,方程没有实数根,此选项符合题意;C、(x-1)(x+2)=0,,方程有实数根,此选项不符合题意;D、原式整理为:,,方程没有实数根,此选项符合题意;故选:ABD.【考点】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.2、BD【解析】【分析】根据四边相等的四边形是菱形即可判断.【详解】解:由作图可知:AC=AD=BC=BD,∴四边形ADBC是菱形且为平行四边形,故选:BD.【考点】本题考查基本作图,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.3、AEBCD【解析】【分析】因为四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可;要使其成为菱形,加上一组邻边相等或对角线垂直均可.【详解】A选项:∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)B选项:∵AC⊥BD,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(对角线互相垂直的平行四边形是菱形)C选项:∵AB=BC,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(邻边相等的平行四边形是菱形)D选项:如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形;E选项:∵AO=DO,四边形ABCD是平行四边形,∴AC=BD,∴四边形ABCD是矩形.(对角线互相平分且相等的平行四边形是矩形)故选:AE,BCD.【考点】考查了菱形和矩形的判定,解题关键是掌握平行四边形的性质和菱形、矩形的判定方法.三、填空题1、【解析】【分析】依据树状图分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】解:由树状图得:两次抽签的所有可能结果一共有9种情况,一根标有,一根标有的有,与,两种情况,一根标有,一根标有的概率是.故答案为:.【考点】本题考查的是用画树状图法求概率.画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.2、①③④【解析】【分析】利用根与系数的关系判断①;由Δ=b2-4ac判断②;由判别式可判断③;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断④.【详解】解:若方程两根为-1和2,则=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正确;由b>a+c不能判断Δ=b2-4ac值的大小情况,故②错误;若b=2a+3c,则Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正确;故答案为:①③④.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系及根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.3、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题.【详解】解:关于的一元二次方程的一个解是,,,.故答案为:2020.【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义.4、x(x﹣1)=21【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为x(x﹣1)=21.【考点】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5、1.25【解析】【分析】设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.【详解】设小路的宽度为,由题意和图示可知,小路的面积为,解一元二次方程,由,可得.【考点】本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.6、20°【解析】【分析】由菱形的性质和等腰三角形的性质求出∠BAC和∠FAB的度数,即可解决问题.【详解】解:∵EF是线段AB的垂直平分线,∴AF=BF,∴∠FAB=∠FBA,∵四边形ABCD是菱形,∠DCB=70°,∴BC=AB,∠BCA=∠DCB=35°,AC⊥BD,∴∠BAC=∠BCA=35°,∴∠FBA=90°﹣∠BAC=55°,∴∠FAB=55°,∴∠FAC=∠FAB﹣∠BAC=55°﹣35°=20°,故答案为:20°.【考点】本题考查菱形的性质和等腰三角形的性质,熟练掌握菱形的性质和等腰三角形的性质是解题的关键.7、2020【解析】【分析】根据一元二次方程的解结合根与系数的关系即可得出m2+2m=2022,m+n=−2,将其代入m2+3m+n=m2+2m+(m+n)中即可求出结论.【详解】解:∵m,n分别为一元二次方程x2+2x−2022=0的两个实数根,∴m2+2m=2022,m+n=−2,∴m2+3m+n=m2+2m+(m+n)=2022+(−2)=2020.故答案为:2020.【考点】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系得出m2+2m=2022,m+n=−2是解题的关键.8、1【解析】【分析】利用整体的思想以及根与系数的关系即可求出答案.【详解】解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3.故答案为1.【考点】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.9、或2【解析】【分析】根据新定义的运算得到,整理并求解一元二次方程即可.【详解】解:根据新定义内容可得:,整理可得,解得,,故答案为:或2.【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.10、2028【解析】【分析】根据一元二次方程的解的概念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得.【详解】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.【考点】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.四、解答题1、(1)见解析(2)S四边形BCMN=4-8【解析】【分析】(1)利用矩形的对边平行和四个角都是直角的性质得到两对相等的角,利用AAS证得两三角形全等即可;(2)利用全等三角形的性质求得AD=BN=2,AN=4,从而利用勾股定理求得AB的长,利用S四边形BCMN=S矩形ABCD-S△ABN-S△MAD求得答案即可.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD.∵BN⊥AM,∴∠BNA=90°,在△ABN与△MAD中,,∴△ABN≌△MAD(AAS).(2)解:∵△ABN≌△MAD,∴BN=AD.∵AD=2,∴BN=2.又∵AN=4,∴在Rt△ABN中,由勾股定理,得AB=2.∴S矩形ABCD=2×2=4.又∵S△ABN=S△MAD=×2×4=4.∴S四边形BCMN=S矩形ABCD-S△ABN-S△MAD=4-8.【考点】本题考查了矩形的性质及全等三角形的判定,了解矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分是解答本题的关键,难度不大.2、若斜边为2m+3,则(2m+3)2=(2m-3)2+解得m=.综上所述,m=或m=.【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.72..【解析】【分析】先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或.【考点】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.3、(1)见解析(2)105人(3)小颗送给小彬的两枚纪念章中恰好有一枚印有“天问一号”图案的概率【解析】【分析】(1)根据题干所给数据整理可得;根据中位数的定义求解可得;由频数分布表可得数据的分布情况;(2)用总人数乘以样本中90≤a<100人数所占比例即可得;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)补全表格如下:这40名同学的“航天知识竞赛”成绩的中位数是第20、21个数据的平均数,所以这40名同学的“航天知识竞赛”成绩的中位数是(分)(2)估计该校九年级840人中,获得“小宇航员”称号的约为840×=105(人).(3)将分别印有“嫦娥五号”“天问一号”“长征火箭”“天宫一号”的印章分别记为A、B、C、D,画树状图如下∶则共有12种等可能的结果数,其中小颖送给小彬的两枚纪念章中恰好有一枚印有“嫦娥五号”图案的结果数为6,所以小颖送给小彬的两枚纪念章中恰好有一枚印有“嫦娥五号”图案的概率为【考点】本题考查统计与概率,频数分布表、频数直方图、中位数、用样本估计全体、概率.是中考的常考题型,熟练掌握知识点是关键.4、解:(1)2点朝上出现的频率为;5点朝上的概率为;(2)小军的说法不正确,(3)小刚的说法是不正确的.
【解析】【分析】(1)直接利用概率公式计算即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国黄金集团资产管理限公司培育钻石项目招聘3人易考易错模拟试题(共500题)试卷后附参考答案
- 2026年陕西财经职业技术学院单招职业倾向性测试必刷测试卷及答案1套
- 2026年河南省许昌市单招职业适应性考试必刷测试卷新版
- 2025中国铁路上海局集团限公司招聘1101人一(本科及以上)易考易错模拟试题(共500题)试卷后附参考答案
- 2025中国铁塔总部直属单位春季校园招聘18人易考易错模拟试题(共500题)试卷后附参考答案
- 2026年贵阳康养职业大学单招职业倾向性考试必刷测试卷新版
- 2025中国航天科工集团限公司总部部分岗位招聘6人易考易错模拟试题(共500题)试卷后附参考答案
- 2026年浙江安防职业技术学院单招职业适应性测试必刷测试卷附答案
- 2026年郑州电力职业技术学院单招职业适应性测试必刷测试卷新版
- 2025中国移动重庆公司社会招聘138人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年泰安市公开招聘劳务派遣制工会社会工作者(52人)笔试考试参考试题及答案解析
- 新能源汽车技术职业生涯规划
- 2009-2022历年四川省定向招录乡镇机关公务员《公共基础知识》真题有答案详解2023上岸甄选资料
- 作业现场安全生产确认制度
- 上海市住宅修缮施工资料及表式
- 有限空间作业安全知识考试试卷
- 金平福源矿业有限公司田房锡矿采矿权出让收益评估报告
- 一级注册消防工程师题库
- YC/T 145.7-1998烟用香精标准样品的确定和保存
- GB 17498.7-2008固定式健身器材第7部分:划船器附加的特殊安全要求和试验方法
- 2021年《中国近现代史纲要》说课2课件
评论
0/150
提交评论