




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福清市中考数学通关考试题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()A. B. C. D.2、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()A. B. C. D.3、如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(
)A.π B.π C.π D.24、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()A.1 B.2 C. D.5、如图,AB,CD是⊙O的弦,且,若,则的度数为()A.30° B.40° C.45° D.60°二、多选题(5小题,每小题3分,共计15分)1、在图形旋转中,下列说法正确的是(
)A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等2、下列关于圆的叙述正确的有()A.对角互补的四边形是圆内接四边形B.圆的切线垂直于圆的半径C.正多边形中心角的度数等于这个正多边形一个外角的度数D.过圆外一点所画的圆的两条切线长相等3、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x2﹣8x﹣1+m=0的两根,则m的值为()A.15 B.16 C.17 D.184、如图,是的直径,,是上的点,且,分别与,相交于点,,则下列结论一定成立的是(
)A. B. C.平分D. E.5、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(
)A.4 B.6 C.8 D.10第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.2、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.3、对于任意实数,抛物线与轴都有公共点.则的取值范围是_______.4、如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),与y轴交于点C.下列结论:①abc>0;②3a﹣c=0;③当x<0时,y随x的增大而增大;④对于任意实数m,总有a﹣b≥am2﹣bm.其中正确的是_____(填写序号).5、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是_______.四、简答题(2小题,每小题10分,共计20分)1、已知:如图,二次函数y=ax2+bx+的图象经过点A(2,6)和B(4,4),直线l经过点B并与x轴垂直,垂足为Q.(1)求二次函数的表达式;(2)如图1,作AK⊥x轴,垂足为K,连接AO,点R是直线1上的点,如果△AOK与以O,Q,R为顶点的三角形相似,请直接写出点R的纵坐标;(3)如图2,正方形CDEF的顶点C是第二象限抛物线上的点,点D,E在直线1上,以CF为底向右做等腰△CFM,直线l与CM,FM的交点分别是G,H,并且CG=GM,FH=HM,连接CE,与FM的交点为N,且点N的纵坐标是﹣1.求:①tan∠DCG的值;②点C的坐标.2、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.(1)求反比例函数和一次函数的解析式;(2)求一次函数与反比例函数图象的两个交点A,C的坐标.五、解答题(4小题,每小题10分,共计40分)1、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.2、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.3、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.4、如图,和中,,,,连接,点M,N,P分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.-参考答案-一、单选题1、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.2、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,∴P小张从不同的出入口进出的结果数,故选D.【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.3、B【解析】【分析】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得∠CMO=90°,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长.【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点.∵O是AB中点,E是AC中点,∴OE是△ABC的中位线,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=×π×2=π.故选:B.【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆.4、D【分析】作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.【详解】解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,∵⊙O与AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四边形ODCE为正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.5、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵,∴,∵,∴,故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.二、多选题1、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可.【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意;B、由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD.【考点】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.2、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确.【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D.过圆外一点引的圆的两条切线,则切线长相等,D选项正确.故选:ACD.【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念.3、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值.【详解】解:当3为腰时,此时a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此时方程为x2﹣8x+15=0,解得x1=3,x2=5;当3为底时,此时a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此时方程为x2﹣8x+16=0,解得x1=x2=4;综上所述,m的值为16或17.故答案为:BC.【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键.4、ACDE【解析】【分析】根据直径的性质,垂径定理等知识一一判断即可;【详解】∵AB是直径,∴∠ADB=90°,∴AD⊥BD,故A正确;∵C,D是⊙O上的点,∴与不一定相等,∴∠A与∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A与∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC与∠AEC不一定相等,故B选项错误;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正确∴∠ABC=∠CBD,即CB平分∠ABD,故C正确,∵AF=DF,AO=OB,∴BD=2OF,故E正确,故选:ACDE.【考点】本题考查直径的性质、垂径定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、CD【解析】【分析】过P作弦AB⊥OP,连接OA,根据垂径定理求出AP=BP,根据勾股定理求出AP,再求出AB,再得出答案即可.【详解】解:过P作弦AB⊥OP,连接OA,如图,∵OA=5,OP=3,∴,∵OP⊥AB,OP过圆心O,∴AP=BP=4,即AB=4+4=8,∴过P点长度为整数的弦有4条,①过P点最短的弦的长度是8,②过P点最长的弦的长度是10,③还有两条弦,长度是9,故答案为:CD.【考点】本题考查了勾股定理和垂径定理,能熟记垂径定理是解此题的关键.三、填空题1、【解析】【分析】直接根据“上加下减,左加右减”进行计算即可.【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:.【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.2、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:.【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.3、【解析】【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解.【详解】解:由抛物线与轴都有公共点可得:,即,∴,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,∴,即的最小值为,∴;故答案为.【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键.4、①④##④①【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断①,根据二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),即可求得对称轴,以及当时,,进而可以判断②③,根据顶点求得函数的最大值,即可判断④.【详解】解:抛物线开口向下,,对称轴,,抛物线与轴交于正半轴,,,故①正确,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),对称轴为,则,当,,,故②不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故③不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故④正确.故答案为:①④.【考点】本题考查了二次函数图象的性质,数形结合是解题的关键.5、【解析】【分析】用黄球的个数除以总球的个数即可得出取出黄球的概率.【详解】解:∵不透明的袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,∴从袋子中随机取出1个球,则它是黄球的概率为;故答案为:.【考点】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.四、简答题1、(1)y=﹣;(2)点R的纵坐标为12,﹣12,或﹣;(3)①tan∠DCG的值是,②点C坐标为(﹣1,3).【解析】【分析】(1)将点A(2,6)和B(4,4)代入抛物线解析式,得方程组,解得a和b,再代回原解析式即可;(2)设点R的纵坐标为n,则QN=|n|,分两种情况,根据相似关系列比例式即可解得;(3)①由三角形的中位线,及证Rt△CDG≌Rt△FEH(HL)可解;②先根据点C在抛物线上,设其横坐标为m,然后用其分别表示出相关点的坐标,并表示出直线CE,再根据△CFN∽△EHN,及相似三角形对应边上的高之比也等于相似比,从而建立关于m的方程,解之,然后代回点C即可.【详解】(1)将点A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函数的表达式为y=.(2)∵A(2,6),AK⊥x轴,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,设点R的纵坐标为n,则QN=|n|,如果△AOK与以O,Q,R为顶点的三角形相似,有两种情况:①,则n=±12;②,则,从而n=±.答:点R的纵坐标为,12,﹣12,或﹣.(3)①∵CG=GM,FH=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF为正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限抛物线y=上的点,∴设点C坐标为(m,),则DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF为正方形,∴∠DEC=45°,故可设CE解析式为:y=﹣x+b,将点E坐标代入得b=.∴CE解析式为:y=﹣x﹣,∵点N的纵坐标是﹣1,∴﹣1=﹣x﹣,x=﹣,∴点N坐标为(﹣,﹣1),∵CDEF为正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,则EH边上的高与CF边上的高的比值也为,∴,化简得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴点C坐标为(﹣1,3).答:点C坐标为(﹣1,3).【考点】本题是二次函数的综合题,涉及到待定系数法求解析式,相似三角形,一次函数,三角函数,解方程等多项知识点与能力,难度较大.2、(1),;(2)A(-1,6),C(6,-1).【解析】【分析】(1)先根据反比例函数的图象所在的象限判断出k的符号,在由△ABO的面积求出k的值,进而可得出两个函数的解析式;(2)把两函数的解析式组成方程组,求出x、y的值,即可得出A、C两点的坐标.【详解】(1)∵AB⊥x轴于点B,且,∴,∴.∵反比例函数图象在第二、四象限,∴,∴,∴反比例函数的解析式为,一次函数的解析式为;(2)由,解得,或,∴A(-1,6),C(6,-1).【考点】本题考查了反比例函数比例系数k的几何意义及应用,反比例函数与一次函数的交点问题,能根据△ABO的面积求出k的值是解答此题的关键.五、解答题1、(1)见解析;(2)CD=,EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在Rt△CDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC.∵∴∠1=∠B∠2=∠C∵OB=OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直径∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10∴AC=8∵半径OD⊥AC于E∴EC=AE=4OE=∴ED=2由勾股定理得,CD=∵∴△EDF∽△CBF∴设EF=x,则FC=4-x∴EF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.2、边长为,边心距为【分析】过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.【详解】解:过点O作OE⊥BC,垂足为E,∵正方形ABCD是半径为R的⊙O内接四边形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半径为6的圆内接正方形ABCD的边长为,边心距为.【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.3、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,△PBQ的面积等于4cm2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中级电工模拟试题及答案
- 2025北京航空航天大学交通科学与工程学院聘用编学院科研助理F岗招聘1人模拟试卷及答案详解(易错题)
- 2025北京市场监管总局直属单位招聘210人考前自测高频考点模拟试题及答案详解(易错题)
- 2025江西招收劳务派遣制工作人员3人考前自测高频考点模拟试题及答案详解(典优)
- 网络安全宣传周测试题及答案解析
- 2025年新能源企业智能微网技术应用创新报告
- 克蒂汽车安全测试题及答案解析
- 2025-2030工业过程控制系统安全防护需求与解决方案研究报告
- 2025-2030工业视觉检测系统精度提升路径与行业渗透率研究
- 2025-2030工业视觉检测系统应用场景与投资价值评估报告
- (2025秋新版)苏教版小学数学二年级上册全册教案
- 月嫂培训教材及课件
- 银行趣味测试题目及答案
- 2025年CIA考试题库(附答案)
- 2025年招录考试-法院书记员考试历年参考题库含答案解析(5套典型题)
- 2025关于销售人员的劳动合同样本
- 精神科护理科普:理解与关爱慢性精神疾病患者
- 法律与道德小学生课件
- vivo公司管理制度
- DB31/T 804-2014生活饮用水卫生管理规范
- 儿童早期矫正教学课件
评论
0/150
提交评论