重难点解析人教版8年级数学上册《全等三角形》章节训练试题(含详细解析)_第1页
重难点解析人教版8年级数学上册《全等三角形》章节训练试题(含详细解析)_第2页
重难点解析人教版8年级数学上册《全等三角形》章节训练试题(含详细解析)_第3页
重难点解析人教版8年级数学上册《全等三角形》章节训练试题(含详细解析)_第4页
重难点解析人教版8年级数学上册《全等三角形》章节训练试题(含详细解析)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》章节训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图:,,则此题可利用下列哪种方法来判定(

)A.ASA B.AAS C.HL D.缺少条件,不可判定2、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是(

).A.带①去 B.带②去 C.带③去 D.①②③都带3、如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL4、下列关于全等三角形的说法不正确的是A.全等三角形的大小相等 B.两个等边三角形一定是全等三角形C.全等三角形的形状相同 D.全等三角形的对应边相等5、下列各组中的两个图形属于全等图形的是(

)A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在△ABC中,,AC=8cm,BC=10cm.点C在直线l上,动点P从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为____秒时,△PMC与△QNC全等.2、如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.3、如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降30cm时,这时小明离地面的高度是___cm.4、已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.5、在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的长.2、如图,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.3、如图,在五边形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线.(1)求证:△ABE≌△DCE;(2)当∠A=80°,∠ABC=140°,时,∠AED=_________度(直接填空).4、如图,在中,AB=AC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,∠DAC的平分线交DM于点F.求证:AF=CM.5、如图,已知线段a、b和,用尺规作一个三角形,使.(要求:不写已知、求作、作法、只画图,保留作图痕迹)-参考答案-一、单选题1、C【解析】【分析】根据全等三角形的判定定理直接求解.【详解】解:在Rt△ABC和Rt△DCB中,∴(HL),故选C.【考点】本题考查了全等三角形的判定定理,牢记全等三角形的判定定理是解题的关键.2、C【解析】【分析】根据三角形全等的判定定理判断即可.【详解】带③去,理由如下:∵③中满足ASA的条件,∴带③去,故选C.【考点】本题考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解题的关键.3、D【解析】【详解】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故选D.4、B【解析】【分析】根据全等三角形的定义与性质即可求解.【详解】A、全等三角形的大小相等,说法正确,故A选项错误;B、两个等边三角形,三个角对应相等,但边长不一定相等,所以不一定是全等三角形,故B选项正确;C、全等三角形的形状相同,说法正确,故C选项错误;D、全等三角形的对应边相等,说法正确,故D选项错误.故选B.【考点】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等.5、B【解析】【分析】根据全等图形的定义,逐一判断选项,即可.【详解】A.两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故选B【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.二、填空题1、2或6或6或2【解析】【分析】设点P运动时间为t秒,根据题意化成两种情况,由全等三角形的性质得出,列出关于t的方程,求解即可.【详解】解:设运动时间为t秒时,△PMC≌△CNQ,∴斜边,分两种情况:①如图1,点P在AC上,点Q在BC上,图1∵,,∴,,∵,∴,∴;②如图2,点P、Q都在AC上,此时点P、Q重合,图2∵,,∴,∴;综上所述,点P运动时间为2或6秒时,△PMC与△QNC全等,故答案为:2或6.【考点】本题考查了全等三角形的性质和判定的应用,根据题意判断两三角形全等的条件是解题关键,同时要注意分情况讨论,解题时避免遗漏答案.2、70【解析】【分析】先利用HL证明△ABE≌△CBF,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【考点】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3、80【解析】【分析】根据题意可得:OF=OG,OC=OD,利用已知条件判断出△OFC≌△OGD,得到CF=DG,即可求出答案.【详解】∵O是FG和CD的中点∴OF=OG,OC=OD在△OFC和△OGD中∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明离地面的高度=支点到地面的高度+CF=50+30=80cm故答案为80【考点】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法.4、4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.5、4:3【解析】【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【详解】∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.三、解答题1、(1)见解析;(2)【解析】【分析】(1)由角平分线的性质得DE=DF,再根据HL证明Rt△AED≌Rt△AFD,得AE=AF,从而证明结论;(2)根据DE=DF,得,代入计算即可.【详解】(1)证明:∵AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,∴DE=DF,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵DE=DF,∴AD垂直平分EF;(2)解:∵DE=DF,∴,∵AB+AC=10,∴DE=3.【考点】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点.2、(1)17.5°;(2)证明过程见解析【解析】【分析】(1)首先计算出∠B,∠BAC的度数,根据AE是∠BAC的角平分线可得∠EAC=37.5°,再根据Rt△ADC中直角三角形两锐角互余可得∠DAC的度数,进而可得答案;(2)过A作AD⊥BC于D,证明∠DAE=∠FEC,由三角形内角和定理得到∠EAC=90°-∠C,进而可得∠DAE=∠DAC-∠EAC,利用等量代换可得∠DAE=∠C即可求解.【详解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由内角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,两锐角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5°,故答案为:17.5°;(2)过A点作AD⊥BC于D点,如下图所示:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C)=(180°-3∠C)=90°-∠C,∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-∠C)=(90°-∠C)-(90°-∠C)=∠C,∴∠FEC=∠C,∴∠C=2∠FEC.【考点】此题主要考查了三角形内角和定理,角平分线的定义,直角三角形中两锐角互余等知识点,熟练掌握各图形的性质是解决本题的关键.3、(1)见解析;(2)100【解析】【分析】(1)根据∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS证明△ABE≌△DCE;(2)根据三角形全等的性质求出∠D的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线,∴∠ABE=∠CBE=∠ABC,∠BCE=∠DCE=∠BCD,∴∠ABE=∠DCE,∠CBE=∠BCE,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为,∴∠AED=,故答案为:100.【考点】此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.4、证明见解析.【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证.【详解】∵,∴,∴,∵AF是的平分线,∴,∵E是AC的中点,∴,在和中,,∴,∴.【考点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论