江苏省江阴市中考数学考试彩蛋押题(研优卷)附答案详解_第1页
江苏省江阴市中考数学考试彩蛋押题(研优卷)附答案详解_第2页
江苏省江阴市中考数学考试彩蛋押题(研优卷)附答案详解_第3页
江苏省江阴市中考数学考试彩蛋押题(研优卷)附答案详解_第4页
江苏省江阴市中考数学考试彩蛋押题(研优卷)附答案详解_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省江阴市中考数学考试彩蛋押题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(

)A.π B.π C.π D.22、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为()A. B. C. D.3、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是(

)A. B. C. D.4、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()A. B. C. D.85、如图,点O是△ABC的内心,若∠A=70°,则∠BOC的度数是()A.120° B.125° C.130° D.135°二、多选题(5小题,每小题3分,共计15分)1、如图,AB为的直径,,BC交于点D,AC交于点E,.下列结论正确的是(

)A. B.C. D.劣弧是劣弧的2倍2、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(

)A.与相切 B.四边形是菱形C. D.3、已知点,下面的说法正确的是(

)A.点与点关于轴对称,则点的坐标为B.点绕原点按顺时针方向旋转后到点,则点的坐标为C.点与点关于原点中心对称,则点的坐标为D.点先向上平移个单位,再向右平移个单位到点,则点的坐标为4、已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论中正确的结论是()A.BC=2DE B.D点到OE的距离不变 C.BD+CE=2DE D.AE为外接圆的切线5、下表时二次函数y=ax2+bx+c的x,y的部分对应值:…………则对于该函数的性质的判断中正确的是()A.该二次函数有最大值B.不等式y>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的两个实数根分别位于﹣<x<0和2<x<之间D.当x>0时,函数值y随x的增大而增大第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.2、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.3、中国“一带一路”倡议给沿线国家带来很大的经济效益.若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为______________.4、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.5、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.四、简答题(2小题,每小题10分,共计20分)1、如图,一次函数y1=ax+b与反比例函数的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围;(3)点P是x轴上一点,当时,请求出点P的坐标.2、(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.求证:;(2)类比探究:如图(2),在矩形中,将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接,若,,求的长.五、解答题(4小题,每小题10分,共计40分)1、若二次函数图像经过,两点,求、的值.2、在直角坐标平面内,三个顶点的坐标分别为、、(正方形网格中每个小正方形的边长是一个单位长度).(1)将向下平移4个单位长度得到的,则点的坐标是____________;(2)以点B为位似中心,在网格上画出,使与位似,且位似比为2:1,求点的坐标;(3)若是外接圆,求的半径.3、已知关于的二次函数.(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.4、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”已知点O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ的“潜力点”时,直接写出b的取值范围-参考答案-一、单选题1、B【解析】【分析】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得∠CMO=90°,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长.【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点.∵O是AB中点,E是AC中点,∴OE是△ABC的中位线,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=×π×2=π.故选:B.【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆.2、B【分析】几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解【详解】解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,所以这个几何体从正面看到的平面图形为故选:B【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.3、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.【详解】解:∵绕点顺时针旋转得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴选项A、C不一定正确,∴∠A=∠EBC,∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴选项B不一定正确;故选D.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.4、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点作于点,连接,AB是的直径,,,,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.5、B【解析】【分析】利用内心的性质得∠OBC=∠ABC,∠OCB=∠ACB,再根据三角形内角和计算出∠OBC+∠OCB=55°,然后再利用三角形内角和计算∠BOC的度数.【详解】解:∵O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故选:B.【考点】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.二、多选题1、ABD【解析】【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径所对圆周角是直角等知识即可解答【详解】如图,连接,,∵是的直径,∴,又∵中,,∴点D是的中点,即,故选项正确;由选项可知是的平分线,∴,由圆周角定理知,,故选项正确;∵是的直径,∴,∵,∴,∴,∵,∴,∴,即,∴,故选项错误;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故选项正确.综上所述,正确的结论是:.故选:【考点】本题考查了圆周角定理,等边对等角,等腰直角三角形的判定和性质,直径所对圆周角是直角等知识,解题关键是求出相应角的度数2、ABCD【解析】【分析】A、利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A项所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出答案;D、利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.【详解】A、连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故A正确;B、由A项得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故B正确;C、连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正确;D、∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故D正确;故选:ABCD.【考点】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.3、BD【解析】【分析】A、根据轴对称的性质判断即可;B、根据旋转变换的性质判断即可;C、根据中心对称的性质判断即可;D、根据平移变换的性质判断即可;【详解】A、点A与点B关于轴对称,则点B的坐标为B(-2,-3),A选项错误,不符合题意;B、点绕原点按顺时针方向旋转后到点,则点的坐标为,B选项正确,符合题意;C、点与点关于原点中心对称,则点的坐标为B(2,-3),C选项错误,不符合题意;D、点先向上平移个单位,再向右平移个单位到点,则点的坐标为,D选项正确,符合题意;故选:BD【考点】本题考查平移变换,轴对称变换,中心对称,旋转变换等知识,解题的关键是熟练掌握平移变换,旋转变换,轴对称变换,中心对称的性质,属于常考题型.4、AB【解析】【分析】连接OD,可证明△ODE是等边三角形,所以A,B正确;通过举反例:当重合,时,可得:<可得C不一定成立,根据切线的定义,可得D不正确,从而可得答案.【详解】解:连接OD,∵∠A=60°∴∠B+∠C=120°,的度数为∵的度数为∴的度数为∴∠DOE=60°,又OD=OE,∴△ODE是等边三角形,即所以A正确,符合题意;则D到OE的长度是等边△ODE的高,而等边的边长等于圆的半径,则高一定是一个定值,因而B正确,符合题意;如图:当重合,时,则为的切线,同理可得:此时则为的直径,>此时<所以C不符合题意;与的外接圆有两个交点,不是外接圆的切线,所以D不符合题意;故选:AB.【考点】本题考查的是圆的基本性质,圆弧的度数与其所对的圆周角的度数之间的关系,切线的概念的理解,等边三角形的判定与性质,灵活运用以上知识解题是解题的关键.5、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a>0,即可判断A,D不正确,由图表可直接判断B,C正确.【详解】解:∵当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;∴二次函数y=ax2+bx+c的对称轴为直线x=1,x>1时,y随x的增大而增大,x<1时,y随x的增大而减小.∴a>0即二次函数有最小值则A,D错误由图表可得:不等式y>-1的解集是x<0或x>2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-<x<0和2<x<之间;所以选项B,C正确,故选:BC.【考点】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键.三、填空题1、1.25【解析】【分析】设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.【详解】设小路的宽度为,由题意和图示可知,小路的面积为,解一元二次方程,由,可得.【考点】本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.2、【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,则摸出的小球标号之和大于5的概率为.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.3、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴该地区人均收入增长率为20%.故本题答案应为:20%.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.4、【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.5、【解析】【分析】如图:连接OP、OQ,根据,可得当OP⊥AB时,PQ最短;在中运用含30°的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可.【详解】解:如图:连接OP、OQ,∵是的一条切线∴PQ⊥OQ∴∴当OP⊥AB时,如图OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案为.【考点】本题考查了切线的性质、含30°直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当PO⊥AB时、线段PQ最短是解答本题的关键.四、简答题1、(1),;(2)当y1<y2,时,自变量x的取值范围为x>8或0<x<2;(3)点P的坐标为(3,0)或(-3,0).【解析】【分析】(1)利用待定系数法确定解析式即可;(2)利用数形结合的思想,分析两个函数图象的位置,根据交点的横坐标确定满足条件的解集即可.(3)先利用分割法求出的面积,利用求出的面积,由面积公式列式求解即可.【详解】解:(1)将,代入中,得解得:∴反比例函数y2的表达式为:将,代入中,得:解得:∴一次函数y1的表达式为:(2)由图象可知,当时,反比例函数图象应在一次函数图象上方∴自变量x的取值范围为:或(3)设直线AB与x轴的交点为D,如下图:∵延长AO交反比例函数图象于点C∴点C与点A关于原点对称∴设直线AB交x轴的交点为D将代入∴∴又∵∴即:∴∵点P在x轴上∴或【考点】本题考查待定系数法求一次函数与反比例函数的解析式,通过图象交点情况确定满足条件的自变量取值范围等知识点,能够利用数形结合思想是解题的关键.2、(1)见解析;(2);见解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再证明四边形DQFG是平行四边形即可解决问题;(2)如图2中,作GM⊥AB于M.然后证明△ABE∽△GMF即可解决问题;(3)如图3中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【详解】(1)如图(1),∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四边形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四边形DQFG是平行四边形,∴DQ=GF,∴FG=AE;(2).理由:如图(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四边形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如图(3)中,作PM⊥BC交BC的延长线于M.由BE:BF=3:4,设BE=3k,BF=4k,则EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根据勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考点】本题考查了正方形、矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,是解题的关键.五、解答题1、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得,解得:∴b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.2、(1)(2,-2)(2)图见解析,(1,0)(3)【分析】(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)证明是直角三角形,根据直角三角形外切圆半径公式计算即可.(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)由图可知:∵,,∴∴是直角三角形,∴能盖住的最小圆即为外接圆,设其半径为R;则【点睛】本题考查作图—平移变换,作图—位似变换、三角形外接圆,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.3、(1)见解析(2)(3)的值为1或-5【解析】【分析】(1)计算判别式的值,得到,即可判定;(2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;(3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.(1)证明:令,则∴∴不论为何实数,方程有两个不相等的实数根∴无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线∵,抛物线开口向上∴抛物线上的点离对称轴越远对应的函数值越大∵∴M点到对称轴的距离为:1N点到对称轴的距离为:2∴(3)解:∵抛物线∴沿轴翻折后的函数解析式为∴该抛物线的对称轴为直线①若,即,则当时,有最小值∴解得,∵∴②若,即,则当时,有最小值-1不合题意,舍去③若,,则当时,有最小值∴解得,∵∴综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论