




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版9年级数学上册《概率初步》同步测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、从下列命题中,随机抽取一个是真命题的概率是(
)(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)两条对角线长分别为6和8的菱形的周长是40.A. B. C. D.12、老师从甲、乙,丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是(
)A. B. C. D.3、如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是(
)A.1 B.
C.
D.4、在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是(
)A. B. C. D.5、现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是(
)A. B. C. D.6、下列说法正确的是(
).A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B.“打开电视机,正在播放乒乓球比赛”是必然事件C.“面积相等的两个三角形全等”是不可能事件D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次7、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为()A.12个 B.9个 C.6个 D.3个8、下列事件中,属于必然事件的是(
)A.抛掷硬币时,正面朝上B.明天太阳从东方升起C.经过红绿灯路口,遇到红灯D.玩“石头、剪刀、布”游戏时,对方出“剪刀”9、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为(
)A. B. C. D.10、投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()A.p一定等于B.p一定不等于C.多投一次,p更接近D.投掷次数逐步增加,p稳定在附近第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、五张背面完全相同的卡片上分别写有、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是______.2、有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_________.3、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)200500800200012000成活数(m)187446730179010836成活的频率0.9350.8920.9130.8950.903根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).4、一个盒子里装有除颜色外都相同的1个红球,4个黄球.把下列事件的序号填入下表的对应栏目中.①从盒子中随机摸出1个球,摸出的是黄球;②从盒子中随机摸出1个球,摸出的是白球;③从盒子中随机摸出2个球,至少有1个是黄球.事件必然事件不可能事件随机事件序号_______________5、甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是_____.6、一个不透明的袋子里装有12个球,其中有9个红球,2个黑球,1个白球,它们除颜色外都相同,若从袋子中随机摸出1个球,则它是黑球的概率为________.7、有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.8、对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为_____.9、如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是______.10、一个不透明的盒子里有红色、黄色、白色小球共80个.它们除颜色外均相同,小文将这些小球摇匀后从中随机摸出一个记下颜色,再把它放回盒中,不断重复,多次试验后他发现摸到红色、黄色小球的频率依次为30%和40%,由此可估计盒中大约有白球_____个.三、解答题(5小题,每小题6分,共计30分)1、为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.2、某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A,B,C依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是__________.(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.3、某校为了解学生对“A:古诗词,B:国画,C:闽剧,D:书法”等中国传统文化项目的最喜爱情况,在全校范围内随机抽取部分学生进行问卷调查(每人限选一项),并将调查结果绘制成如下不完整的统计图,根据图中的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;扇形统计图中,项目D对应扇形的圆心角为______度;(2)请把折线统计图补充完整;(3)如果该校共有2000名学生,请估计该校最喜爱项目A的学生有多少人?(4)若该校在A,B,C,D四项中任选两项成立课外兴趣小组,请用画树状图或列表的方法求恰好选中项目A和D的概率.4、为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是____人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形的圆心角度数为_____度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在,,,,五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中,这两项活动的概率.5、如图,有四张正面标有数字﹣2,﹣1,0,1,背面颜色一样的卡片,正面朝下放在桌面上,小红从四张卡片中随机抽取一张卡片记下数字,小明再从余下的三张卡片中随机抽取一张卡片记下数字.设小红抽到的数字为x,小明抽到的数字为y,点A的坐标为(x,y).(1)请用列表法或画树状图的方法列出点A所有结果;(2)若点A在坐标轴上,则小红胜;反之,则小明胜.请你用概率的相关知识解释这个游戏是否公平?-参考答案-一、单选题1、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)菱形的对角线长为6和8根据菱形的性质,对角线互相垂直且平分,利用勾股定理可求得菱形的边长为5,则菱形的周长为,是假命题则随机抽取一个是真命题的概率是,故选:C.【考点】本题考查了命题的真假,概率,菱形的性质,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.2、B【解析】【分析】根据随机事件概率大小的求法,找到全部情况的总数以及符合条件的情况,两者的比值就是其发生的概率的大小.【详解】解:根据题意可得:从甲、乙,丙、丁四位同学中任选一人去学校劳动基地浇水,总数是4个人,符合情况的只有甲一个人,所以概率是P=,故选:B.【考点】本题考查概率的求法与运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、D【解析】【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.【详解】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=.故选D.【考点】本题考查概率公式和等腰三角形的判定,解题关键是熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商.4、A【解析】【分析】根据概率公式计算,即可求解.【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是.故选:A【考点】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.5、D【解析】【分析】列举出所有的情况,再得到至少有一盒过期的情况数,利用概率公式计算即可.【详解】解:∵有4盒同一品牌的牛奶,其中2盒已过期,设未过期的两盒为A,B,过期的两盒为C,D,随机抽取2盒,则结果可能为(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6种情况,其中至少有一盒过期的有5种,∴至少有一盒过期的概率是,故选D.【考点】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、A【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛”是随机事件,故此选项错误;C、“面积相等的两个三角形全等”是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【考点】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、A【解析】【详解】解:∵口袋中装有4个黑球且摸到黑球的概率为,∴口袋中球的总数为:4÷=12(个).故选A.8、B【解析】【分析】根据随机事件、必然事件的概念即可作答.【详解】A.抛硬币时,正面有可能朝上也有可能朝下,故正面朝上是随机事件;B.太阳从东方升起是固定的自然规律,是不变的,故此事件是必然事件;C.经过路口,有可能出现红灯,也有可能出现绿灯、黄灯,故遇到红灯是随机事件;D.对方有可能出“剪刀”,也有可能出“石头”、“布”,出现对方出“剪刀”随机事假.故选:B.【考点】本题考查了随机事件、必然事件的概念,充分理解随机事件的概念是解答本题的关键.9、B【解析】【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.【详解】假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:,当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得.故选:B.【考点】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.10、D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近.故选:D.【考点】考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.二、填空题1、##0.4【解析】【分析】根据题意可知有理数有-31、,共2个,根据概率公式即可求解【详解】解:在、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数中,-31、是有理数,∴任意取一张,抽到有理数的概率是故答案为:【考点】本题考查了实数的分类,根据概率公式求概率,理解题意是解题的关键.2、##0.4【解析】【分析】根据题目中的数据,可以计算出从中随机抽取一张,编号是偶数的概率.【详解】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于,故答案为:.【考点】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.3、0.9【解析】【分析】由题意根据概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率进行分析即可.【详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【考点】本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意掌握频率=所求情况数与总情况数之比.4、
③
②
①【解析】【分析】直接利用必然事件:一定发生的事件;不可能事件:一定不会发生的事件;随机事件:可能发生可能不发生的事件,来依次判断即可.【详解】解:根据盒子里装有除颜色外都相同的1个红球,4个黄球,①从盒子中随机摸出1个球,摸出的是黄球,属于随机事件;②从盒子中随机摸出1个球,摸出的是白球,属于不可能事件;③从盒子中随机摸出2个球,至少有1个是黄球,属于必然事件;故答案是:③,②,①.【考点】本题考查了必然事件、不可能事件、随机事件,解题的关键是掌握相应的概念进行判断.5、甲【解析】【详解】∵1,2,3,4,5,6这六个数字中大于3的数字有3个:4,5,6,∴P(甲获胜)=,∵1,2,3,4,5,6这六个数字中小于3的数字有2个:1,2,∴P(乙获胜)=,∵,∴获胜的可能性比较大的是甲,故答案为:甲.6、【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:根据题意可得:不透明的袋子里装有将12个球,其中2个黑球,任意摸出1个,摸到黑球的概率是.故答案为:.【考点】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,比较简单.7、【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【考点】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.8、0.84【解析】【分析】观察表格合格的频率趋近于0.84,从而由此得到口罩合格的概率即可.【详解】解:∵随着抽样的增大,合格的频率趋近于0.84,∴估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.故答案为:0.84.【考点】本题考查了用频率估计概率,解题关键是熟练运用频率估计概率解决问题.9、【解析】【分析】首先确定m、n的值,推出有序整数(m,n)共有:3×7=21(种),由方程x2+nx+m=0有两个相等实数根,则需:△=n2-4m=0,有(0,0),(1,2),(1,-2)三种可能,由此即可解决问题.【详解】解:m=0,±1,n=0,±1,±2,±3∴有序整数(m,n)共有:3×7=21(种),∵方程x2+nx+m=0有两个相等实数根,则需:△=n2-4m=0,有(0,0),(1,2),(1,-2)三种可能,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是,故答案为.【考点】此题考查了概率、根的判别式以及根与系数的关系、绝对值不等式等知识,此题难度适中,注意掌握概率=所求情况数与总情况数之比.10、24【解析】【分析】根据题意,先求出摸到白色小球的频率,再乘以总球数即可求解.【详解】解:∵多次试验的频率会稳定在概率附近,∴从盒子中摸出一个球恰好是白球的概率约为1-30%-40%=30%,∴白球的个数约为80×30%=24个.故答案为24.【考点】本题考查了利用频率估计概率,解答此题的关键是要计算出盒中白球所占的比例,再计算其个数.三、解答题1、(1)40;补全条形统计图见解析;90°;(2)该校参与体育类和美术类社团的学生总人数大约有1625人;(3)选中1名男生和1名女生担任开幕式主持人的概率是.【解析】【分析】(1)利用A类人数除以所占百分比可得抽取总人数;根据总数计算出C类的人数,然后再补图;用360°乘以C类所占的百分比,计算即可得解;(2)利用样本估计总体的方法计算即可;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生的结果数,然后利用概率公式求解.(1)解:抽取的学生总数:12÷30%=40(人),C类学生人数:40-12-14-4=10(人),补全统计图如下:扇形统计图中C类所在的扇形的圆形角度数是360°×=90°;故答案为:40;90°;(2)解:2500×=1625(人),答:该校参与体育类和美术类社团的学生总人数大约有1625人;(3)(3)画树状图为:共有12种等可能的结果数,其中选中1名男生和1名女生担任开幕式主持人的有8种,所以选中1名男生和1名女生担任开幕式主持人的概率是:.【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查的是条形统计图和扇形统计图的综合运用.2、(1);(2)【解析】【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是,故答案为:;(2)列表如下:由表可知,共有9种等可能结果,其中小辰和小安选择同一种型号免洗洗手液有3种结果,所以小辰和小安选择同一种型号免洗洗手液的概率为.【考点】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.3、(1)200,9(2)见解析(3)800人(4)【解析】【分析】(1)根据折线统计图中C的人数和扇形统计图中C所占的百分比,求出总数;(2)分别求出A,B的人数,再补全统计图;(3)用总人数乘以喜爱项目A的占比即可;(4)用树状图列出所有等可能情况,再根据题意求得概率.(1)解:C组调查了30人,占15%,因此总共调查了200(人),D组调查了50人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- F公司芯片BOM管理优化研究
- 工艺泼染工安全素养水平考核试卷含答案
- 有色金属矿干燥工岗前沟通技巧考核试卷含答案
- 点直线平面的投影教学设计中职专业课-建筑识图与构造-建筑类-土木建筑大类
- 索状爆破器材制造工安全检查考核试卷含答案
- 全面风险管理导向下A商业银行内部审计评价指标体系优化研究
- 黑龙江省耕作制度的演变及优化研究
- 生态宜居目标下县域乡村人居空间环境优化策略研究-以庐江县为例
- Unit 6 An old man tried to move the mountains Section B (2a-2e) 说课稿 2023-2024学年人教版八年级英语下册
- 脚印的联想(教案)-人教版(2012)美术二年级下册
- 企业年度税务筹划方案范本
- Unit1HappyHolidaySectionBReading1a-1d课件人教版八年级英语上册
- 2025年书记在公文抄袭问题专项整治工作会议上的讲话范文
- 2024年下半年黑龙江省嫩江铁路有限责任公司校招笔试题带答案
- 示波器的使用示波器的使用
- GA 802-2019道路交通管理机动车类型
- FZ/T 54007-2009锦纶6弹力丝
- 新概念英语第二册全册教案
- 影子银行与资产证券化课件
- 主要造岩矿物的鉴定特征概述111课件
- 《中石油专业技术人员晋升职称专业日语选读》译文
评论
0/150
提交评论