




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥芬河市中考数学能力检测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()A.1 B.2 C. D.2、的边经过圆心,与圆相切于点,若,则的大小等于()A. B. C. D.3、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()A. B.π﹣2 C.1+ D.1﹣4、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()A.3 B. C. D.5、函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x…-10123…y…30-1m3…①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(
)A.① B.② C.③ D.④2、下列方程中,是一元二次方程的是(
)A. B. C. D.3、下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是(
)A. B. C. D.4、如图,AB为的直径,,BC交于点D,AC交于点E,.下列结论正确的是(
)A. B.C. D.劣弧是劣弧的2倍5、二次函数(,,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有(
)A. B.C. D.时,方程有解第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.2、已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B(m+3,n)均在二次函数图象上,求n的值为____.3、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.4、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.5、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.四、简答题(2小题,每小题10分,共计20分)1、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.2、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.五、解答题(4小题,每小题10分,共计40分)1、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.2、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)3、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)王老师被分配到“就餐监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.4、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.-参考答案-一、单选题1、D【分析】作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.【详解】解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,∵⊙O与AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四边形ODCE为正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.2、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接,,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.3、B【解析】【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-S△ABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-S△ABO=.故选:B.【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.4、A【分析】分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.【详解】解:连接BO,并延长交⊙O于D,连结DC,∵∠A=30°,∴∠D=∠A=30°,∵BD为直径,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故选A.【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.5、D【解析】【分析】先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.【详解】解:函数y=ax与y=ax2+a(a≠0)A.函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;
B.函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;
C.函数y=ax图形可得a>0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;
D.函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;
故选D.【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.二、多选题1、CD【解析】【分析】根据表格可知直线x=1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断①②③,根据与x轴交点坐标结合开口方向可判断④.【详解】解:从表格可以看出,函数的对称轴是直线x=1,顶点坐标为(1,﹣1),此时有最小值∴函数与x轴的交点为(0,0)、(2,0),∴抛物线y=ax2+bx+c的开口向上故①错误;抛物线y=ax2+bx+c的对称轴为直线x=1故②错误;方程ax2+bx+c=0的根为0和2故③正确;当y>0时,x的取值范围是x<0或x>2故④正确;故选CD.【考点】本题考查了二次函数的图象和性质.解题的关键在于根据表格获取正确的信息.2、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【考点】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.3、AB【解析】【分析】根据旋转的性质对题中图形进行分析即可.【详解】解:A、旋转任意角度都与原图形重合,故符合题意;B、旋转最小的度数是120度与原图形重合,故符合题意;C、旋转最小的度数是72度(72度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意;D、旋转最小的度数是90度(90度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意.故选AB.【考点】本题主要考查了图形的旋转,理解旋转的定义是解题的关键.4、ABD【解析】【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径所对圆周角是直角等知识即可解答【详解】如图,连接,,∵是的直径,∴,又∵中,,∴点D是的中点,即,故选项正确;由选项可知是的平分线,∴,由圆周角定理知,,故选项正确;∵是的直径,∴,∵,∴,∴,∵,∴,∴,即,∴,故选项错误;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故选项正确.综上所述,正确的结论是:.故选:【考点】本题考查了圆周角定理,等边对等角,等腰直角三角形的判定和性质,直径所对圆周角是直角等知识,解题关键是求出相应角的度数5、BCD【解析】【分析】根据抛物线与轴有两个交点,可知,即可判断A选项;根据时,,即可判断B选项;根据对称轴,即可判断C选项;D.根据抛物线的顶点坐标为,函数有最大即可判定D.【详解】解:由图象可知,抛物线开口向下,对称轴在轴的右侧,与轴的交点在轴的负半轴,∵抛物线与轴有两个交点,∴,∴,即,故A错误;由图象可知,时,,∴,故B正确;∵抛物线的顶点坐标为,∴,,∵,∴,即,故C正确;∵抛物线的开口向下,顶点坐标为,∴(为任意实数),即时,方程有解.故D正确.故选BCD.【考点】本题主要考查了二次函数的性质、二次函数图像等知识点,掌握二次函数的性质与解析式的关系是解答本题的关键.三、填空题1、6【分析】如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OA、OB、OC、OD、OE、OF.∵正六边形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,∵的周长为,∴的半径为,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.2、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入即可求得n的值.【详解】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案为:4.【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键.3、【解析】【分析】由旋转的性质可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【详解】解:∵把△ADE顺时针旋转90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴点F,点B,点C共线,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根据勾股定理得:EF=,故答案为:.【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.4、【分析】根据二次函数的性质,对称轴为,进而可得同号,根据列表法即可求得二次函数的对称轴在轴左侧的概率【详解】解:二次函数的对称轴在轴左侧对称轴为,即同号,列表如下共有12种等可能结果,其中同号的结果有4种则二次函数的对称轴在轴左侧的概率为故答案为:【点睛】本题考查了二次函数图象的性质,列表法求概率,掌握二次函数的图象与系数的关系以及列表法求概率是解题的关键.5、35°【分析】根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°−30°×2=40°,∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.故答案为:35°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.四、简答题1、;有最大值;存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标.【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,,,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,,是等腰直角三角形,,,当中边上的高为时,即,,,当时,,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或.【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.2、9【解析】【分析】过点A作AF⊥BC交BC于F,则由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,则在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,从而求出BC.【详解】解:过点A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB•cos30°=,∴BC=2BF=2×=9.【考点】本题考查了等腰三角形的性质和解直角三角形,通过作辅助线构造直角三角形是解题关键五、解答题1、(1)3种可能,分别是“微信”“QQ”,“电话”(2)【分析】(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解.(1)解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.(2)解:画出树状图,如图所示所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况,故两人恰好选中同一种沟通方式的概率为.【点睛】本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文常见的反义词总结
- 中国联通海东市2025秋招市场与服务类专业追问清单及参考回答
- 行政岗位考试试题及答案
- 中国广电常德市2025秋招笔试行测题库及答案网络优化与维护类
- 武威市中石化2025秋招笔试模拟题含答案油品分析质检岗
- 中国广电聊城市2025秋招笔试行测题库及答案行业解决方案经理岗
- 亳州市中石化2025秋招面试半结构化模拟题及答案新材料与新能源岗
- 大唐电力安庆市2025秋招采矿工程专业面试追问及参考回答
- 驻马店市中石油2025秋招面试半结构化模拟题及答案炼化装置操作岗
- 大庆市中石油2025秋招面试半结构化模拟题及答案炼化装置操作岗
- 劳动课冰箱清洁课件
- 2025年公共基础知识考试试题及参考答案详解
- 建筑设计数字化协同工作方案
- 新入行员工安全教育培训课件
- 原生家庭探索课件
- 人教版音乐八年级上册-《学习项目二探索旋律结构的规律》-课堂教学设计
- 《中国人民站起来了》课件 (共50张)2025-2026学年统编版高中语文选择性必修上册
- 中国企业供应链金融白皮书(2025)-清华五道口
- 医院常用消毒液的使用及配置方法
- 2022英威腾MH600交流伺服驱动说明书手册
- 分期支付欠薪协议书范本
评论
0/150
提交评论