




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,AB=CD,AD=BC,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对2、下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等3、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.104、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7 B. C.8 D.95、如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E.若AB=4,BC=8,则图中阴影部分的面积为()A.8 B.10 C.12.5 D.7.56、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③ B.②③④ C.①②④ D.①④7、如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则最小值为()A.2 B.3 C.4 D.68、如图,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,则∠BDE的度数为()A.36° B.30° C.27° D.18°9、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A. B. C.4.5 D.4.310、如图,点E是长方形ABCD的边CD上一点,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD=10,AB=8,那么AE长为()A.5 B.12 C.5 D.13第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,在中,,点、、分别是三边的中点,且,则的长度是__________.2、如图,在正方形ABCD中,点O在内,,则的度数为______.3、如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E、F,连接PB、PD,若AE=2,PF=9,则图中阴影面积为______;4、如图,在矩形ABCD中,BC=2,AB=x,点E在边CD上,且CEx,将BCE沿BE折叠,若点C的对应点落在矩形ABCD的边上,则x的值为_______.5、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.6、正方形的对角线长为cm,则它的周长为__________cm.7、如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为________________.8、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.9、正方形ABCD的边长为4,则图中阴影部分的面积为_____.10、如图,在矩形纸片ABCD中,AB=6,BC=4,点E是AD的中点,点F是AB上一动点将AEF沿直线EF折叠,点A落在点A′处在EF上任取一点G,连接GC,,,则的周长的最小值为________.三、解答题(5小题,每小题6分,共计30分)1、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.
(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段.2、如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,过点A作射线l∥BC,若点P从点A出发,以每秒2cm的速度沿射线l运动,设运动时间为t秒(t>0),作∠PCB的平分线交射线l于点D,记点D关于射线CP的对称点是点E,连接AE、PE、BP.(1)求证:PC=PD;(2)当△PBC是等腰三角形时,求t的值;(3)是否存在点P,使得△PAE是直角三角形,如果存在,请直接写出t的值,如果不存在,请说明理由.3、如图,将直角三角形分割成一个正方形和两对全等的直角三角形,在Rt△ABC中,∠ACB=90°,四边形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若设正方形的边长为x,则可以探究x与直角三角形ABC的三边a,b,c之间的关系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小颖同学发现利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的边长x与直角三角形ABC的三边a,b,c之间的关系.请你根据小颖的思路,完成她的探究过程.(2)请你结合探究和小颖的解答过程验证勾股定理.
4、D、分别是不等边三角形即的边、的中点.是平面上的一动点,连接、,、分别是、的中点,顺次连接点、、、.(1)如图,当点在内时,求证:四边形是平行四边形;(2)若四边形是菱形,点所在位置应满足什么条件?(直接写出答案,不需说明理由.)5、如图,在等腰三角形ABC中,AB=BC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F.(1)求证:BCF;(2)当C=a时,判定四边形的形状并说明理由.-参考答案-一、单选题1、D【解析】【分析】根据平行四边形的判定与性质,求解即可.【详解】解:∵AB=CD,AD=BC∴四边形为平行四边形∴,,,∴、又∵,∴、∴图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质.2、D【解析】【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.3、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.4、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90,D是边AB的中点,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.5、B【解析】【分析】利用折叠的性质可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,进而可得出AE=CE,根据矩形性质可得AB=CD=4,BC=AD=8,∠D=90°,设AE=CE=x,则ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面积公式即可求出△ACE的面积,则可得出答案.【详解】解:由折叠的性质,∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四边形ABCD为矩形,∴AB=CD=4,BC=AD=8,∠D=90°,设AE=CE=x,则ED=8﹣x,在Rt△CDE中,根据勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴图中阴影部分的面积=S△ACEAE•AB=×5×4=10.故选:B【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的面积,利用勾股定理求出AE的长是解题的关键.6、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.7、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【详解】解:连接BP.∵四边形ABCD为正方形,面积为16,∴正方形的边长为4.∵△ABE为等边三角形,∴BE=AB=4.∵四边形ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4.故选:C.【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称—最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.8、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出.【详解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故选:B.【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键.9、A【解析】【分析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.【详解】解:∵四边形ABCD为正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵点G为DE的中点,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.10、C【解析】【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论.【详解】解:∵四边形ABCD是矩形,∴,,,∵将△ADE沿着AE对折,点D恰好折叠到边BC上的F点,∴,,∴,∴,∵,∴,∴,∴,∴,故选:C.【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.二、填空题1、【解析】【分析】根据中位线定理可得的长度,再根据直角三角形斜边上的中线等于斜边的一半即可求出的长度.【详解】解:∵点、、分别是三边的中点,且∴∵∴故答案为:【点睛】本题主要考查了三角形的中位线定理和直角三角形斜边上的中线,熟练掌握三角形的中位线定理和直角三角形斜边上的中线是解答本题的关键.2、135°【解析】【分析】先根据正方形的性质得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形内角和定理求解.【详解】解:∵四边形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案为:135°.【点睛】本题主要考查了正方形的性质,三角形内角和定理,解题的关键在于能够熟练掌握正方形的性质.3、【解析】【分析】作PM⊥AD于M,交BC于N,根据矩形的性质可得S△PEB=S△PFD即可求解.【详解】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,,∴,,∴S阴=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明.4、或【解析】【分析】分两种情况进行解答,即当点落在边上和点落在边上,分别画出相应的图形,利用翻折变换的性质,勾股定理进行计算即可.【详解】解:如图1,当点落在边上,由翻折变换可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如图2,当点落在边上,由翻折变换可知,四边形是正方形,,,故答案为:或.【点睛】本题考查翻折变换,解题的关键是掌握翻折变换的性质以及勾股定理是解决问题的前提.5、或【解析】【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:为的三等分点在中有如图:当将纸片沿横向对折根据题意得:,在中有为的三等分点故答案为:或【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.6、16【解析】【分析】根据正方形对角线的长,可将正方形的边长求出,进而可将正方形的周长求出.【详解】解:设正方形的边长为x,∵正方形的对角线长为cm,∴,解得:x=4,∴正方形的边长为:4(cm),∴正方形的周长为4×4=16(cm).故答案为:16.【点睛】本题考查了正方形的性质,勾股定理,解决本题的关键是掌握正方形的性质.7、【解析】【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,∴四边形是平行四边形,∴,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,∵,,∴,在中,;故答案是:.【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键.8、5【解析】【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.9、8【解析】【分析】正方形的对角线是它的一条对称轴,对应点到两边的都是垂直的,距离也都相等,左边梯形面积和右边梯形面积相等,所以图中阴影部分的面积正好为正方形面积的一半.然后列式进行计算即可得解.【详解】解:由图形可得:S=×4×4=8,所以阴影部分的面积为8.故答案是:8.【点睛】本题考查正方形的性质,轴对称的性质,将阴影面积转化为三角形面积是解题的关键,学会于转化的思想思考问题.10、【解析】【分析】连接AC交EF于G,连接A′G,此时△CGA′的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.当CA′最小时,△CGA′的周长最小,求出CA′的最小值即可解决问题.【详解】解:如图,连接AC交EF于G,连接A′G,连接EC,由折叠的性质可知A′G=GA,此时△A′GC的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周长的最小值+CA′,当CA′最小时,△CGA′的周长最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值为2-2,∴△CGA′的周长的最小值为2-2,故答案为:.【点睛】本题考查翻折变换,矩形的性质,勾股定理,最短路径问题等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题1、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四边形ABDE为平行四边形,∴AB=DE,∴CD=ED,∴点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF为等边三角形,∴CF=CD=DF=AB=ED.【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.2、(1)见解析;(2)t=1或或;(3)存在,△PAE是直角三角形时t=或【分析】(1)根据平行线的性质可得∠PDC=∠∠BCD,根据角平分线的定义可得∠PCD=∠BCD,则∠PCD=∠PDC,即可得到PC=PD;(2)分当BP=BC=4cm时,当PC=BC=4cm时,当PC=PB时三种情况讨论求解即可;(3)分当∠PAE=90°时,当∠APE=90°时,当∠AEP=90°时,三种情况讨论求解即可.【详解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,
若△PBC是等腰三角形,存在以下三种情况:①当BP=BC=4cm时,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四边形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②当PC=BC=4cm时,由勾股定理,即,解得;③当PC=PB时,P在BC的垂直平分线上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,综上所述,当t=1或或时,△PBC是等腰三角形;(3)∵D关于射线CP的对称点是点E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,则存在以下三种情况:①当∠PAE=90°时,此时点C、A、E在一条直线上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②当∠APE=90°时,∴∠EPD=90°∵D、E关于直线CP对称,∴∠EPF=∠DPF=45°,∴∠APC=∠DPF=45°,∵l∥BC,∴∠CAP=180°-∠ACB=90°,∴∠ACP=45°,∴AP=AC=3cm,∴,∴;③当∠AEP=90°时,在Rt△ACP中,PC>AP,在Rt△AEP中,AP>PE,∵PC=PE=PD,故此情况不存在,综上,△PAE是直角三角形时或.【点睛】本题主要考查了轴对称的性质,角平分线的定义,平行线的性质,等腰三角形的性质,勾股定理,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够利用分类讨论的思想求解.3、(1),证明见解析;(2)见解析【分析】(1)由正方形的性质可得OF=OE,OF⊥AC,OE⊥BC,由Rt△AOF≌Rt△AOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根据(1)和题目已知可得,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中石油(上海)新材料研究院发布招聘笔试题库历年考点版附带答案详解
- 2025中国航天科工集团第六研究院601所校园招聘笔试题库历年考点版附带答案详解
- 2025年医学影像学放射病学报告撰写模拟试题答案及解析
- 2025年眼科常见疾病的诊断与治疗模拟测试卷答案及解析
- 2025年儿科疾病典型病例诊断与治疗模拟试卷答案及解析
- 2025年急诊医学现场应急处置模拟演练试卷答案及解析
- 2025年教育行业在线教育平台用户行为分析研究报告
- 2025年智慧家居行业智能产品趋势及市场规模研究报告
- 2025年跨境电商行业国际物流解决方案研究报告
- 2025年汽车交通行业智能交通管理技术探讨报告
- 2025年全国国家版图知识竞赛题库及答案(中小学组)
- 机加工安全生产培训考核试题及答案(班组级)(精)
- 电梯从业证考试试题及答案解析
- 钢结构厂房装修施工方案报告
- DB32-T 5156-2025 零碳园区建设指南
- 人教版三年级数学上册第一单元分层作业设计
- 浙教版(2024)科学八年级上册 2.1力(第2课时)课件
- 中国外卖大战报告(中英)-高盛-202507
- 咖啡对身体健康的影响研究
- DB32∕T 4569-2023 发泡陶瓷保温板 保温系统应用技术规程
- 2025-2030年中国生猪养殖屠宰行业市场发展分析及发展趋势与投资机会究报告
评论
0/150
提交评论