2025年海南省文昌市中考数学重难点及答案详解【真题汇编】_第1页
2025年海南省文昌市中考数学重难点及答案详解【真题汇编】_第2页
2025年海南省文昌市中考数学重难点及答案详解【真题汇编】_第3页
2025年海南省文昌市中考数学重难点及答案详解【真题汇编】_第4页
2025年海南省文昌市中考数学重难点及答案详解【真题汇编】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省文昌市中考数学重难点考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为()A.8 B. C. D.2、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(

)A.相交 B.相离 C.相切 D.无法判断3、“2022年春节期间,中山市会下雨”这一事件为()A.必然事件 B.不可能事件 C.确定事件 D.随机事件4、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()A.3 B. C. D.5、下列事件中,是必然事件的是()A.刚到车站,恰好有车进站B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C.打开九年级上册数学教材,恰好是概率初步的内容D.任意画一个三角形,其外角和是360°二、多选题(5小题,每小题3分,共计15分)1、下列方程中,是一元二次方程的是(

)A. B. C. D.2、下列命题正确的是(

)A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦3、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(

)A. B. C.3 D.54、下列说法不正确的是(

)A.经过三个点有且只有一个圆B.经过两点的圆的圆心是这两点连线的中点C.钝角三角形的外心在三角形外部D.等腰三角形的外心即为其中心5、下列说法正确的是(

)A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),与y轴交于点C.下列结论:①abc>0;②3a﹣c=0;③当x<0时,y随x的增大而增大;④对于任意实数m,总有a﹣b≥am2﹣bm.其中正确的是_____(填写序号).2、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.3、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.4、到点的距离等于8厘米的点的轨迹是__.5、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.四、简答题(2小题,每小题10分,共计20分)1、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.2、计算:五、解答题(4小题,每小题10分,共计40分)1、已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根.2、端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.3、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.4、已知抛物线过点.(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角.①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.-参考答案-一、单选题1、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.2、A【解析】【分析】过点C作CD⊥AB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解.【详解】解:过点C作CD⊥AB于点D,如图所示:∵,,,∴,根据等积法可得,∴,∵以点为圆心,为半径的圆,∴该圆的半径为,∵,∴圆与AB所在的直线的位置关系为相交,故选A.【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.3、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【分析】分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.【详解】解:连接BO,并延长交⊙O于D,连结DC,∵∠A=30°,∴∠D=∠A=30°,∵BD为直径,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故选A.【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.5、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360°是必然事件;故选D.【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.二、多选题1、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【考点】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.2、ABD【解析】【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【考点】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.3、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.4、ABD【解析】【分析】A.根据确定圆的条件求解即可;B.根据确定圆心的方法求解即可;C.根据三角形外心的性质求解即可;D.根据三角形外心的性质求解即可;【详解】解:A、如果三个点在一条直线上,不存在经过这三个点的圆,故选项错误,符合题意;B、经过两点的圆的所有圆心在两点连线的垂直平分线上,不仅仅是这两点连线的中点,故选项错误,符合题意;C、钝角三角形的外心是三边垂直平分线的交点,在三角形外部,选项正确,不符合题意;D、等腰三角形的外心是三边垂直平分线的交点,不是其中心,故选项错误,符合题意;故选:ABD.【考点】此题考查了确定圆的条件,确定圆心的方法,三角形的外心等知识,解题的关键是熟练掌握确定圆的条件,确定圆心的方法,三角形的外心.5、ABD【解析】【分析】根据圆的相关知识和垂径定理进行分析即可.【详解】解:A.圆是轴对称图形,它有无数条对称轴,正确;B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边,正确;C.弦长相等,则弦所对的弦心距也相等,不正确,只有在同圆或等圆中,弦长相等,则弦所对的弦心距也相等;D.垂直于弦的直径平分这条弦,并且平分弦所对的弧,正确.故选:ABD.【考点】本题考查了学生对圆的基本概念和垂径定理的理解,属于基础题.三、填空题1、①④##④①【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断①,根据二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),即可求得对称轴,以及当时,,进而可以判断②③,根据顶点求得函数的最大值,即可判断④.【详解】解:抛物线开口向下,,对称轴,,抛物线与轴交于正半轴,,,故①正确,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),对称轴为,则,当,,,故②不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故③不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故④正确.故答案为:①④.【考点】本题考查了二次函数图象的性质,数形结合是解题的关键.2、【分析】画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有12个等可能的结果,摸到的两个红球的有2种结果,摸到的两个红球的概率是,故答案为:.【点睛】本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格.3、或##或【解析】【分析】连接,根据题意可得,当∠ADQ=90°时,分点在线段上和的延长线上,且,勾股定理求得即可.【详解】如图,连接,在Rt△ABC中,∠ACB=90°,,,,,根据题意可得,当∠ADQ=90°时,点在上,且,,如图,在中,,在中,故答案为:或.【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.4、以点为圆心,8厘米长为半径的圆【分析】由题意直接根据圆的定义进行分析即可解答.【详解】到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.故答案为:以点为圆心,8厘米长为半径的圆.【点睛】本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.5、【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,则摸出的小球标号之和大于5的概率为.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.四、简答题1、1或4或16.【解析】【分析】根据成比例线段的性质求解即可.【详解】解:设添加的线段长度为x,当时,解得:;当时,解得:;当时,解得:.∴所添线段的长度为1或4或16.【考点】此题考查了线段成比例,解题的关键是熟练掌握线段成比例性质并分类讨论.2、【解析】【分析】首先代入特殊角的三角函数值,再进行二次根式的运算即可求得.【详解】解:.【考点】本题考查了含特殊角的三角形函数值的混合运算,熟练掌握特殊角的三角形函数值及二次根式的运算是解决本题的关键.五、解答题1、证明见祥解;.【解析】【分析】(1)先求出判别式,再配方变为即可;(2)用十字相乘法可以求出根的表达式,方程的两个实数根都为正整数,列不等式组,即可得出m的值.【详解】证明:∵是关于的一元二次方程,,∴此方程总有两个实数根.解:∵,∴,∴,.∵方程的两个实数根都为正整数,,解得,,∴..【考点】本题考查了根的判别式,配方为平方式,根据方程的两个实数根都为正整数,列出不等式组,求出是解题的关键.2、(1)本次参加抽样调查的居民有600人;(2)见解析;(3).【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解.【详解】(1)60÷10%=600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为600﹣180﹣60﹣240=120(人),喜欢A类的人数的百分比为×100%=30%;喜欢C类的人数的百分比为×100%=20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2,所以小明同时选中花生粽子和红枣粽子的概率==.【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.3、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),则有,解得,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线BD的解析式为y=kx+b,代入点B、D,,解得,∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x,﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时,S有最大值,最大值为.(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,﹣t+3),H(t,﹣t2+2t+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论