




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省深州市中考数学自我提分评估考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75°2、下列四个图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()A.平移 B.翻折 C.旋转 D.以上三种都不对4、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()A.1 B. C. D.5、已知x1,x2是一元二次方程2x2-3x=5的两个实数根,下列结论错误的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=二、多选题(5小题,每小题3分,共计15分)1、下列说法中,不正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.圆有且只有一个内接三角形D.相等的圆心角所对的弧相等2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有(
)A.A、B关于x轴对称; B.A、B关于y轴对称;C.A、B关于原点对称; D.若A、B之间的距离为43、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(
)A.B.当时,y随x的增大而增大C.无论a取任何不为0的数,该函数的图象必经过定点D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是4、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(
)A. B. C.3 D.55、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是(
)A. B. C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.2、如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,,点P是OC上的一个动点,则BP+DP的最小值为______.3、将抛物线向上平移()个单位长度,<k<,平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),则下列结论正确的是__________.(写出所有正确结论的序号)①0<p<1-;
②1-<p<1;
③q<n;
④q>2k-k.4、抛物线的开口方向向______.5、如图,、分别与相切于A、B两点,若,则的度数为________.四、简答题(2小题,每小题10分,共计20分)1、抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.2、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.五、解答题(4小题,每小题10分,共计40分)1、某商店如果将进价8元的商品按每件10元出售,那么每天可销售200件,现采用提高售价,减少进货量的方法增加利润,如果这种商品的售价每涨1元,那么每天的进货量就会减少20件,要想每天获得640元的利润,则每件商品的售价定为多少元最为合适?2、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.①求点F的坐标;②直接写出点P的坐标.3、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.4、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接.(1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由.-参考答案-一、单选题1、B【解析】【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【详解】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故选:B.【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键.2、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.4、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.5、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】解:∵x1、x2是一元二次方程2x2-3x=5的两个实数根,∴,故A正确,不符合题意;这里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正确,不符合题意,D错误,符合题意.故选:D.【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,,是解题的关键.二、多选题1、ACD【解析】【分析】根据不共线三点确定一个圆即可判断A,B,C选项,根据同圆或等圆中,相等的圆心角所对的弧相等即可判断D选项【详解】不共线三点确定一个圆,故A选项不正确,B选项正确;一个圆上可以找出无数个不共线的三个点,即可构成无数个三角形,这些三角形都是这个圆的内接三角形圆有无数个内接三角形;故C选项不正确;同圆或等圆中,相等的圆心角所对的弧相等,故D选项不正确.故选ACD.【考点】本题考查了圆的内接三角形的定义,不共线三点确定一个圆,同圆或等圆中,相等的圆心角所对的弧相等,理解圆的相关性质是解题的关键.2、BD【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可.【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为,故D正确故选BD【考点】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键.3、ACD【解析】【分析】求得顶点坐标,根据题意即可判断①正确;根据二次函数的性质即可判断②错误;二次函数是不为0的常数)的顶点,即可判断③错误;根据题意时,时,即可判断④正确.【详解】解:二次函数,顶点为,在轴的下方,∵函数的图象与轴交于、两点,抛物线开口向上,,故①正确;时,随的增大而增大,故②错误;由题意可知当,二次函数是不为0的常数)的图象一定经过点,故③正确;线段上有且只有5个横坐标为整数的点,且对称轴为直线,∴当时,,当时,,,解得,故④正确;故选:ACD.【考点】本题考查了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键.4、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.5、ABC【解析】【分析】根据根的判别式Δ=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用.【详解】解:A、∵Δ=b2-4ac=02-4×1×4=-16<0,∴此方程没有实数根,故本选项符合题意;B、∵Δ=b2-4ac=(-4)2-4×1×4=0,∴此方程有两个相等的实数根,故本选项符合题意;C、∵Δ=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根,故本选项符合题意;D、∵Δ=b2-4ac=22-4×1×(-1)=8>0,∴此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.三、填空题1、2【分析】根据扇形的面积公式S=,代入计算即可.【详解】解:∵“完美扇形”的周长等于6,∴半径r为=2,弧长l为2,这个扇形的面积为:==2.答案为:2.【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.2、【分析】如图,连接AD,PA,PD,OD.首先证明PA=PB,再根据PD+PB=PD+PA≥AD,求出AD即可解决问题.【详解】解:如图,连接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值为2,故答案为:2.【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.3、②④##④②【解析】【分析】先画出函数图像,判断出当时抛物线和反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例函数图象的交点个数,再利用抛物线的对称性与反比例函数的图象与性质直接判断即可.【详解】解:∵抛物线,∴该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,∴m-s=,∵<k<,∴∴抛物线的右支与反比例函数图象只有一个交点,且该交点横坐标大于1;∵平移后的抛物线与双曲线y=(x>0)交于点P(p,q),M(1+,n),∴点M为抛物线右支与反比例函数图象的交点,∴点P为抛物线左支与反比例函数图象的交点,由于反比例函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称∴1-<p<1;q>2k-k.∴②④正确;故答案为:②④.【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断.4、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.5、【分析】根据已知条件可得出,,再利用圆周角定理得出即可.【详解】解:、分别与相切于、两点,,,,,.故答案为:.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.四、简答题1、(1)(2)(3)存在,P的坐标为【解析】【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可.(2)连接BC与对称轴交于点F,此时ΔACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可.(3)设P(m,m2-2m-3)(m>3),根据相似三角形的比例式列出m的方程解答便可.(1)解:把A、C点的坐标代入抛物线的解析式得,解得(2)解:直线BC与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时ΔAFC的周长最小,由(1)知,∴抛物线的解析式为:∴对称轴为直线令,得解得或设直线BC的解析式为得解得∴直线BC的解析式为:∴当时,(3)解:设P(m,m2-2m-3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,经检验,,即故m=5∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为【考点】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,相似三角形的性质与判定,轴对称的性质应用求线段的最值,第(2)题关键是确定F的位置,第(3)题关键在于构建相似三角形.2、(1)顶点P的坐标为;(2)①6个;②,.【解析】【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴顶点为(2,-2a);(2)如图,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6个整数点;②当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,,;∴.当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,;∴.∴综上所述:,.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.五、解答题1、每件商品的售价定为16元最为合适.【解析】【分析】设每件商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,利用每天销售这种商品的利润=每件的销售利润×日销售量(日进货量),即可得出关于x的一元二次方程,解之即可得出x的值,再结合“现采用提高售价,减少进货量的方法增加利润”,即可得出每件商品的售价定为16元最为合适..【详解】解:设每件商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,依题意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16.又∵现采用提高售价,减少进货量的方法增加利润,∴x=16.答:每件商品的售价定为16元最为合适.【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)【分析】(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;(2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;(3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.【详解】(1)令x=0,得y=2,∴点B的坐标为B(0,2);令y=0,得-+x+2=0,解得∵点A在x轴的负半轴;∴A点的坐标(-1,0);(2)设C的坐标为(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,设t=-+x,∴,∴,∴,∴,整理,得,解得∵点C在y轴右侧的抛物线上,∴,此时y=,∴点C的坐标(,);(3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,∵B,E都在抛物线上,∴B,E是对称点,∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,∵抛物线的对称轴为直线x=,B(0,2),∴点E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴点F的坐标为(1,2);②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴点P的坐标为(,).【点睛】本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.3、(1)135°(2)∠MOP-∠NOQ=30°,理由见解析(3)s或s.【分析】(1)先根据OP平分得到∠PON,然后求出∠BOP即可;(2)先根据题意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋转前OC、OD的夹角,然后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国广电广元市2025秋招写作案例分析万能模板直接套用
- 中国广电毕节市2025秋招计算机类专业追问清单及参考回答
- 黄山市中石油2025秋招面试半结构化模拟题及答案安全环保与HSE岗
- 天津市中石油2025秋招面试半结构化模拟题及答案数智化与信息工程岗
- 中国移动资阳市2025秋招笔试性格测评专练及答案
- 保山市中石化2025秋招心理测评常考题型与答题技巧
- 中国移动辽源市2025秋招笔试行测经典题及答案
- 中国联通贵阳市2025秋招笔试行测题库及答案供应链采购类
- 中国联通黄石市2025秋招计算机类专业追问清单及参考回答
- 秦皇岛市中石化2025秋招面试半结构化模拟题及答案财务与审计岗
- 巡检管理制度燃气版
- 2024年企业全面预算管理教材模板
- 新生儿洗胃操作课件
- 2024行政办事员职业资格认证理论考核试题
- 国际工程风险管理案例分析
- 中医眼科学瞳神疾病上
- 运动中的攻击性行为
- 欧美钢结构案例-花旗银行中心工程危机
- 从“管理型”到“服务型”:中职学校行政组织的模式转型与对策研究
- 中华人民共和国档案法修订宣传课件
- 工具式型钢悬挑脚手架施工工法
评论
0/150
提交评论