




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版9年级数学上册《概率初步》专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是(
).A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B.“打开电视机,正在播放乒乓球比赛”是必然事件C.“面积相等的两个三角形全等”是不可能事件D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次2、班长邀请,,,四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则,两位同学座位相邻的概率是(
)A. B. C. D.3、在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率4、彩民李大叔购买1张彩票,中奖.这个事件是(
)A.必然事件 B.确定性事件 C.不可能事件 D.随机事件5、新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:抽检数量n/个205010020050010002000500010000合格数量m/个194693185459922184045959213口罩合格率0.9500.9200.9300.9250.9180.9220.9200.9190.921下面四个推断合理的是(
)A.当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;B.由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;C.随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;D.当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.6、箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A. B. C. D.7、小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:大本营1对自己说“加油!”2后退一格3前进三格4原地不动5对你的小伙伴说“你好!”6背一首古诗例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是(
)A. B. C. D.8、某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕到草鱼的频率稳定在0.5附近,则该鱼塘捞到鲢鱼的概率约为()A. B. C. D.9、两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是(
)A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率10、下列事件中,是必然事件的是(
)A.抛掷一个骰子,出现8点朝上 B.三角形的内角和是C.汽车经过一个有红绿灯的路口时,前方恰好是绿灯 D.明天考试,小明会考满分第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、在,3,5,7中随机选取一个数记为,再从余下的数中随机取一个数记为,则一次函数经过一、三、四象限的概率为______.2、从中任取一数作为,使抛物线的开口向上的概率为__________.3、有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_________.4、从1~5这五个整数中随机抽取两个连续整数,恰好抽中数字4的概率是________.5、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是__________.6、一个不透明的袋子里装有12个球,其中有9个红球,2个黑球,1个白球,它们除颜色外都相同,若从袋子中随机摸出1个球,则它是黑球的概率为________.7、如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是____.8、在,,,,,中任取一个数,取到无理数的概率是______.9、在实数,-3.14,0,中,无理数出现的频率为________10、巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为_____.三、解答题(5小题,每小题6分,共计30分)1、某家庭计划购买1台热销的净水器,使用寿命为十年,该款净水器的过滤由滤芯来实现,在使用过程中,滤芯需要不定期更换,在购进净水器时,可以额外购买滤芯作为备件,每个40元.在净水器使用期间,如果备件不足再购买,则每个需要100元.商家收集整理了100台这款净水器在十年使用期内更换滤芯的个数,得到如图所示的条形图供客户参考.记x表示1台净水器在十年使用期内需更换的滤芯数,y表示1台净水器在购买滤芯上所需的费用(单位:元)(1)以这100位客户所购买的净水器在十年使用期内更换滤芯的个数为样本,估计一台净水器在十年使用期内更换滤芯的个数大于10的概率(2)假设这100台净水器在购买的同时每台都购买9个滤芯或每台都购买10个滤芯,分别计算这100台净水器在购买滤芯上所需费用的平均数,以此作为决策依据,购买1台净水器的同时应购买9个还是10个滤芯?2、2022北京冬残奥会是历史上第13届冬残奥会,于2022年3月4日至3月13日举行.比赛共设6个大项,即残奥高山滑雪、残奥冬季两项、残奥越野滑雪、残奥单板滑雪、残奥冰球、轮椅冰壶.小明为了解同学们是否知晓这6大项目,随机对学校的部分同学进行了一次问卷调查,问卷调查的结果分为“非常了解”“比较了解”“基本了解”“不太了解”四个类别,根据调查结果,绘制出如图所示的条形统计图和扇形统计图.请根据图表中的信息回答下列问题:(1)求本次调查的样本容量.(2)求图中a的值.(3)求图“基本了解”类别所对应的圆心角大小.(4)若某同学对项目了解类别为“非常了解”或者“比较了解”的话,则可称为“奥知达人”,现从该校随机抽查1名学生,求该学生是“奥知达人”的概率.3、某校为了解学生每周课外阅读的情况,在本校随机抽取80名学生进行问卷调查,现将调查结果绘制成不完整的统计图表,请根据图表中的信息解答下列问题:组别阅读时间x/h频数(人数)A8B24C32DnE4小时以上4(1)表中的_____,中位数落在_____组;(2)请补全频数分布直方图;(3)该校准备召开阅读经验分享会,计划在E组学生中随机选出两人作经验交流.已知E组的四名学生中,七八年级各有1人,九年级有2人,请用树状图法或列表法求抽取的两名学生都来自九年级的概率.4、第24届北京冬奥会的开幕式中,“二十四节气的开幕式倒计时”向全世界人民展示了中华文化源远流长的特点,尽显中国式浪漫.杨老师为了让学生深入的了解二十四节气,将每个节气的名称写在形状大小都一样的小卡片上,并将卡片倒扣在桌面上,邀请同学上讲台随机抽取一张卡片,并向大家介绍卡片上对应节气的含义.(1)请问随机抽取一张卡片,上面写有“立春”的概率为;(2)若老师将属于春季的“立春、雨水,惊蛰、春分、清明、谷雨”六张卡片单独拿出,邀请小明和小华同时抽取.请利用画树状图或列表的方法,求两人抽到的卡片上写有相同的字的概率.5、2022年2月4日,北京冬奥会正式拉开帷幕,小明同学非常喜欢冰球、短道速滑、自由式滑雪、冰壶、花样滑冰这五个项目,他也想知道大家对这五个项目的喜爱程度,于是他对所在小区的居民做了一次随机调查统计,让每个人在这五个项目中选一项最喜欢的,并根据这个统计结果制作了如下两幅不完整的统计图:(其中A冰球、B短道速滑、C自由式滑雪、D冰壶、E花样滑冰)(1)请补全条形统计图;(2)由于小明同学能够观看比赛的时间有限,所以他只能从这五个项目中随机选两个项目观看,用列举法求小明选到项目B,C的概率.-参考答案-一、单选题1、A【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛”是随机事件,故此选项错误;C、“面积相等的两个三角形全等”是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【考点】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则,两位同学座位相邻的概率是.故选C.【考点】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.3、D【解析】【分析】计算出各个选项中事件的概率,根据概率即可作出判断.【详解】A、朝上的点数是5的概率为,不符合试验的结果;B、朝上的点数是奇数的概率为,不符合试验的结果;C、朝上的点数大于2的概率,不符合试验的结果;D、朝上的点数是3的倍数的概率是,基本符合试验的结果.故选:D.【考点】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率.4、D【解析】【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件.故选:D.【考点】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.5、C【解析】【分析】根据统计表中的数据和各个选项的说法可以判断是否正确,从而可以解答本题.【详解】A、当抽检口罩的数量是10000个时,口罩合格的数量是9213个,这批口罩中“口罩合格”的概率不一定是0.921,故该选项错误;B、由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,这批口罩中“口罩合格”的概率不一定是0.920,故该选项错误;C、随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920,故该选项正确;D、当抽检口罩的数量达到20000个时,“口罩合格”的概率不一定是0.921,故该选项错误.故选:C.【考点】本题考查了利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.6、C【解析】【分析】直接利用概率公式计算.【详解】解:因为每次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率==.故选:C.【考点】本题考查概率公式的应用,对于放回试验,每次摸到红球的概率是相等的.7、B【解析】【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是,故选B.【考点】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答.8、D【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:,∴x=2400,经检验:是原方程的根,且符合题意,∴捞到鲢鱼的概率为:,故选:D.【考点】本题考察了概率、分式方程的知识,解题的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.9、D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意.故选:D.【考点】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键.10、B【解析】【分析】根据随机事件的相关概念可进行排除选项.【详解】解:A、抛掷一个骰子,出现8点朝上,属于不可能事件,故不符合题意;B、三角形内角和是180°,是必然事件,故符合题意;C、汽车经过一个有红绿灯的路口时,前方恰好是绿灯,属于随机事件,故不符合题意;D、明天考试,小明会考满分,是随机事件,故不符合题意;故选B.【考点】本题主要考查随机事件,熟练掌握随机事件的相关概念是解题的关键.二、填空题1、【解析】【分析】先画树状图,确定a,b,再根据图像分布,确定a,b的符号,根据概率公式计算即可.【详解】根据题意,画树状图如下:共有12种等可能性,∵一次函数经过一、三、四象限,∴a>0,b<0,符合条件的有3种等可能性,∴一次函数经过一、三、四象限的概率为;故答案为:.【考点】本题考查了不放回式的概率计算,一次函数的图像分布,熟练掌握概率计算,准确画树状图是解题的关键.2、【解析】【分析】使抛物线y=ax2+bx+c的开口向上的条件是a>0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得.【详解】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c的开口向上的有3种结果,∴使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.【考点】本题考查概率公式的计算,根据题意正确列出概率公式是解题的关键.3、##0.4【解析】【分析】根据题目中的数据,可以计算出从中随机抽取一张,编号是偶数的概率.【详解】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于,故答案为:.【考点】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.4、【解析】【分析】先画出树状图确定所有等可能的情况数和找出恰好抽中数字4的情况数,然后运用概率公式求解即可.【详解】解:根据题意画树状图如下:则所有等可能的情况有4种,其中恰好抽中数字4的情况有2种所以恰好抽中数字4的概率是.故答案为.【考点】本题题考查了运用树状图法求概率,根据题意正确画出树状图是解答本题的关键.5、【解析】【分析】列举出所有情况,看球的顺序依次是“红黄蓝”的情况数占所有情况数的多少即可.【详解】解:画出树形图:共有27种情况,球的顺序依次是“红黄蓝”的情况数有1种,所以概率为.故答案为:.【考点】考查用列树状图的方法解决概率问题;得到球的顺序依次是“红黄蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.6、【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:根据题意可得:不透明的袋子里装有将12个球,其中2个黑球,任意摸出1个,摸到黑球的概率是.故答案为:.【考点】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,比较简单.7、【解析】【分析】依据选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,可得能拼成一个正方形的概率为.【详解】解:由题可得:随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙.∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为.故答案为:.【考点】本题考查了列举法求概率、完全平方公式的运用,当有两个元素时,可用树形图列举,也可以列表列举.解题的关键是明确题意,找出所求问题需要的条件.8、【解析】【分析】根据无理数就是无限不循环小数判断出无理数的个数,然后根据概率公式求解即可.【详解】解:∵在,,,,,中,是无理数有,这个数,∴任取一个数,取到无理数的概率是,故答案为:.【考点】本题考查了无理数,概率.解题的关键在于确定无理数的个数.9、【解析】【分析】根据无理数的概念确定这些实数中只有是无理数,即在这四个数中无理数只有1个,由此即可确定其出现的频率.【详解】实数,-3.14,0,中只有是无理数,∴无理数出现的频率为.故答案为:.【考点】本题考查无理数的概念和求频率.确定这四个实数中无理数只有这一个是解题关键.10、【解析】【分析】设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可得出答案.【详解】图,设小正方形的边长为1,根据等腰三角形和正方形的性质可求得AB=BE=,FG=DC=,则空白的面积为:;大正方形的面积是:,阴影区域的面积为:8-5=3,所以针尖落在在阴影区域上的概率是:.故答案为:.【考点】本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键.三、解答题1、(1)(2)购买1台净水器同时应购买9个滤芯【解析】【分析】(1)根据表中信息求得更换滤芯数大于10的频数,然后利用概率公式求得答案即可;(2)利用平均数公式求解即可.(1)解:因为在100台净水器中,一台净水器在使用期内更换滤芯件数大于10的频数为10(台),故估计一台净水器在使用期内更换滤芯件数大于10的概率为-(2)解:若每台净水器在购买同时都购买9个滤芯,则这100台净水器中有70台在购买滤芯上的费用为9×40=360,20台的费用为360+100=460,10台的费用为360+2×100=560,∴这100台机器再购买滤芯上所需费用的平均数为:,若每台净水器在购买同时都购买10个滤芯,则这100台净水器中有90台在购买滤芯上的费用为10×40=400,10台的费用为400+100=500,∴这100台机器再购买滤芯上所需费用的平均数为,比较两个平均数可知,购买1台净水器同时应购买9个滤芯.【考点】考查了统计的知识,解题的关键是仔细的观察统计图,能从统计图中整理出进一步解题的有关信息,难度不大.2、(1)400(2)120(3)72°(4)0.35【解析】【分析】(1)根据类别为“非常了解”的同学有20人,所占百分比为5%,用20除以5%即可求解,(2)根据类别为“比较了解”的频数为即可求得的值,(3)根据扇形统计图求得类别为“基本了解”所占百分比为乘以360度即可求解,(4)根据类别为“非常了解”与“比较了解”所占百分比之和为35%,利用频率估算概率即可.(1)解:∵类别为“非常了解”的同学有20人,所占百分比为5%,∴本次调查的样本容量为:.(2)∵类别为“比较了解”的同学占30%,∴类别为“比较了解”的频数为.∴.(3)结合扇形统计图,类别为“基本了解”所占百分比为,故对应圆心角的大小为.(4)类别为“非常了解”与“比较了解”所占百分比之和为35%,根据样本估计总体的原则,从该校随机抽查1名学生,该学生是“奥知达人”的概率为0.35.【考点】本题考查了条形统计图与扇形统计图信息关联,根据样本估计总体,频率估算概率,掌握以上知识是解题的关键.3、(1)12,C;(2)见解析;(3)【解析】【分析】(1)用总人数80减去其他组的人数即可得到n,根据中位数的定义确定答案;(2)根据(1)即可补全统计图;(3)列树状图,然后根据概率公式计算可得答案.(1)解:,∵总人数为80人,∴中位数落在第40、41个学生学习时间的平均数,∵8+24=32<40,32+32=64>40,∴中位数落在C组;故答案为:12,C;(2)如图所示:(3)列树状图如下:共有12种等可能的情况,其中抽取的两名学生都来自九年级的有2种,∴P(抽取的两名学生都来自九年级)=.【考点】此题考查了条形统计图、扇形统计图与统计表,求部分的人数,中位数的定义,计算概率,能读懂统计图并从中得到相关的信息解决问题是解题的关键.4、(1);(2).【解析】【分析】(1)根据概率公式,用写有“立春”的卡片数除以总卡片
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 固原市中石油2025秋招面试半结构化模拟题及答案油田工程技术岗
- 广东地区中石油2025秋招笔试模拟题含答案电气仪控技术岗
- 洛阳市中储粮2025秋招面试专业追问题库综合管理岗
- 2025年鱼船船员考试题及答案
- 中国广电齐齐哈尔市2025秋招面试无领导高频议题20例
- 2025年医院招人考试试题及答案
- 大唐电力甘孜自治州2025秋招机械工程专业面试追问及参考回答
- 安顺市中石油2025秋招笔试模拟题含答案炼油工艺技术岗
- 六安市中石油2025秋招笔试模拟题含答案数智化与信息工程岗
- 中国广电白城市2025秋招网络优化与维护类专业追问清单及参考回答
- JT-T-1258-2019港口能源计量导则
- (必会)中级《审计理论与实务》近年考试真题题库(300题)
- 烘焙与甜点制作
- T-CRHA 028-2023 成人住院患者静脉血栓栓塞症风险评估技术
- 地基事故案例分析
- 国家开放大学《财政与金融(农)》形考任务1-4参考答案
- 英语考级-a级词汇完整版
- 隧道钻爆法掘进施工安全操作规程
- 计算机网络技术专业介绍解析
- 圆锥式破碎机说明书样本
- 九年级英语 第二单元 教案 ·(全)·
评论
0/150
提交评论