




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学函数专题复习讲义及测试题同学们,函数是初中数学的核心内容之一,它不仅是代数知识的延伸,更是连接代数与几何的桥梁,同时也是解决实际问题的重要工具。掌握好函数,对于我们后续的数学学习乃至逻辑思维的培养都至关重要。这份复习讲义旨在帮助大家系统梳理函数的相关知识,巩固基础,提升能力,希望能对大家有所启发。一、函数的基本概念1.1变量与常量在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。例如:汽车行驶过程中,路程和时间是变量,而速度(如果匀速)则是常量。1.2函数的定义一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。理解要点:*必须有两个变量。*对于自变量x的每一个确定的值,函数值y有且只有一个值与之对应(唯一性)。1.3函数的表示方法*解析法:用数学式子表示函数关系的方法。如y=2x+1。*列表法:通过列表格来表示两个变量之间的函数关系。如平方根表。*图像法:用图像来表示函数关系的方法。图像通常是平面直角坐标系中的曲线或直线。这三种表示方法各有优缺点,在实际应用中常常结合使用。1.4函数的自变量取值范围自变量的取值范围是指使函数有意义的自变量的所有可能值。确定自变量取值范围时,通常要考虑以下几点:*整式函数:自变量取值范围是全体实数。*分式函数:分母不能为零。*二次根式函数:被开方数必须是非负数。*实际问题:自变量的取值不仅要使函数解析式有意义,还要符合实际意义。1.5函数值对于自变量x在取值范围内的一个确定的值a,函数y所对应的值称为当x=a时的函数值,记作f(a)或y|ₓ₌ₐ。二、一次函数2.1一次函数的定义一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数。当b=0时,一次函数y=kx+b就变成了y=kx(k是常数,且k≠0),这时我们把它叫做正比例函数。正比例函数是一种特殊的一次函数。2.2一次函数的图像与性质*图像:一次函数y=kx+b的图像是一条经过点(0,b)和(-b/k,0)(k≠0)的直线。因此,画一次函数图像时,通常找出两点即可连线。*正比例函数y=kx的图像是经过原点(0,0)的一条直线。*性质:*k的作用:k称为斜率,决定了直线的倾斜方向和倾斜程度。*当k>0时,直线从左到右上升,y随x的增大而增大。*当k<0时,直线从左到右下降,y随x的增大而减小。*|k|的值越大,直线越陡;|k|的值越小,直线越平缓。*b的作用:b称为截距,是直线与y轴交点的纵坐标。*当b>0时,直线与y轴交于正半轴。*当b=0时,直线经过原点。*当b<0时,直线与y轴交于负半轴。2.3一次函数解析式的确定(待定系数法)要确定一次函数y=kx+b的解析式,关键是求出k和b的值。通常需要知道函数图像上两个点的坐标,代入解析式得到关于k和b的二元一次方程组,解方程组即可求出k和b。2.4一次函数与一元一次方程、一元一次不等式的关系*一次函数y=kx+b的图像与x轴交点的横坐标的值,就是一元一次方程kx+b=0的解。*对于一次函数y=kx+b,当y>0时,相应的x的取值范围就是一元一次不等式kx+b>0的解集;当y<0时,相应的x的取值范围就是一元一次不等式kx+b<0的解集。2.5一次函数的应用一次函数在实际生活中有着广泛的应用,如行程问题、工程问题、利润问题、方案选择等。解决这类问题的关键是:1.分析题意,找出题目中的变量和常量,明确哪个是自变量,哪个是因变量。2.根据题意,列出一次函数的解析式。3.利用一次函数的图像和性质解决问题(如求最值、判断大小等)。三、反比例函数3.1反比例函数的定义一般地,形如y=k/x(k是常数,且k≠0)的函数,叫做反比例函数。反比例函数的解析式也可以写成y=kx⁻¹或xy=k(k≠0)的形式。3.2反比例函数的图像与性质*图像:反比例函数y=k/x的图像是双曲线。*性质:*k的作用:*当k>0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y随x的增大而减小。*当k<0时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y随x的增大而增大。*双曲线的两个分支都无限接近但永远不能到达x轴和y轴。*反比例函数的图像关于原点成中心对称。*k的几何意义:过反比例函数y=k/x(k≠0)图像上任意一点P(x,y)作x轴、y轴的垂线,垂足分别为A、B,则矩形OAPB的面积S=OA×OB=|x|×|y|=|xy|=|k|。即过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积为|k|。3.3反比例函数解析式的确定确定反比例函数y=k/x的解析式,只需要知道图像上一个点的坐标(除原点外),代入解析式即可求出k的值。3.4反比例函数的应用反比例函数在实际问题中也有应用,例如:当路程一定时,速度与时间成反比例;当压力一定时,压强与受力面积成反比例等。解决方法与一次函数类似,先建立函数模型,再利用性质解决问题。四、二次函数初步(部分教材为选学或拓展内容)4.1二次函数的定义一般地,形如y=ax²+bx+c(a,b,c是常数,且a≠0)的函数,叫做二次函数。4.2最简单的二次函数y=ax²的图像与性质*图像:y=ax²的图像是一条抛物线,它关于y轴对称,顶点是原点(0,0)。*性质:*当a>0时,抛物线开口向上,顶点是抛物线的最低点。在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大。*当a<0时,抛物线开口向下,顶点是抛物线的最高点。在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减小。*|a|的大小决定抛物线开口的宽窄,|a|越大,开口越窄;|a|越小,开口越宽。五、函数与图像的综合应用函数的综合应用往往涉及到多种函数的结合,或者函数与几何图形的结合。解决这类问题需要:1.熟练掌握各种函数的定义、图像和性质。2.善于从图像中获取信息,如交点坐标、特殊点坐标等。3.运用数形结合的思想,将代数问题几何化,或几何问题代数化。4.注意分类讨论思想的应用,例如一次函数中k的正负对函数增减性的影响,二次函数中a的正负对开口方向的影响等。六、函数与方程、不等式的联系*函数与方程:函数图像与坐标轴的交点坐标,就是相应方程的解。两个函数图像的交点坐标,就是由这两个函数解析式组成的方程组的解。*函数与不等式:函数值的大小比较,可以通过观察函数图像的上下位置关系来解决。例如,对于两个函数y₁和y₂,当x取某个范围内的值时,y₁的图像在y₂的图像上方,则此时y₁>y₂。---初中数学函数专题测试题一、选择题(每题只有一个正确答案)1.下列关于函数的说法中,正确的是()A.变量x,y满足y²=x,则y是x的函数B.函数y=1/x的自变量x的取值范围是x>0C.对于函数y=-x+1,当x增大时,y也增大D.一次函数y=2x-3的图像不经过第二象限2.若函数y=(m-1)x+m是关于x的一次函数,则m的取值范围是()A.m≠1B.m≠-1C.m=1D.m为任意实数3.反比例函数y=k/x的图像经过点(2,-3),则k的值为()A.-6B.6C.-1.5D.1.54.一次函数y=-2x+4的图像与x轴交于点A,与y轴交于点B,则△AOB(O为原点)的面积是()A.4B.6C.8D.105.若点A(1,y₁)、B(2,y₂)在反比例函数y=3/x的图像上,则y₁与y₂的大小关系是()A.y₁>y₂B.y₁=y₂C.y₁<y₂D.无法确定二、填空题6.函数y=√(x-2)中,自变量x的取值范围是________。7.已知一次函数y=kx+b的图像经过点(0,2)和(1,3),则此一次函数的解析式为________。8.反比例函数y=(k+1)/x的图像在第二、四象限,则k的取值范围是________。9.点P(a,b)在一次函数y=2x+1的图像上,则代数式4a-2b+1的值为________。10.若直线y=x+m与直线y=-2x+4的交点在x轴上,则m的值为________。三、解答题11.已知一次函数的图像经过点A(2,5),且与正比例函数y=2x的图像平行。(1)求此一次函数的解析式;(2)若点B(a,-3)在这个一次函数的图像上,求a的值。12.如图,一次函数y=kx+b的图像与反比例函数y=m/x的图像交于A(-2,1)、B(1,n)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像直接写出:当x为何值时,一次函数的值大于反比例函数的值?(注:此处原题应有图,测试时请自行绘制或想象:双曲线和直线相交于A(-2,1)和B(1,n),A在第二象限,B在第四象限)13.某商店准备购进A、B两种商品。已知购进A商品5件和B商品3件,共需花费110元;购进A商品3件和B商品5件,共需花费130元。(1)求A、B两种商品每件的进价分别是多少元?(2)若该商店准备用不超过500元购进这两种商品共50件,且A商品数量不少于B商品数量的一半,问最多能购进多少件A商品?(注:商品数量为整数)---参考答案与提示一、选择题1.D(提示:A中x取正值时y有两个值;B中x≠0;C中k=-1<0,y随x增大而减小;D中k=2>0,b=-3<0,过一三四象限)2.A(提示:一次函数要求x的系数不为0)3.A(提示:将点代入解析式求k)4.A(提示:求出A(2,0),B(0,4),面积为(2×4)/2=4)5.A(提示:k=3>0,在第一象限y随x增大而减小)二、填空题6.x≥2(提示:被开方数非负)7.y=x+2(提示:用待定系数法,将两点代入求解k和b)8.k<-1(提示:反比例函数在二四象限则比例系数小于0)9.-1(提示:由b=2a+1得2a-b=-1,4a-2b=-2,所以4a-2b+1=-1)10.-2(提示:直线y=-2x+4与x轴交于(2,0),代入y=x+m得0=2+m)三、解答题11.(1)设一次函数解析式为y=2x+b(因为与y=2x平行,k=2)。将点A(2,5)代入得5=2×2+b,解得b=1。所以解析式为y=2x+1。(2)将B(a,-3)代入y=2x+1得-3=2a+1,解得a=-2。12.(1)将A(-2,1)代入反比例函数y=m/x得1=m/(-2),解得m=-2。所以反比例函数解析式为y=-2/x。将B(1,n)代入反比例函数得n=-2/1=-2,所以B(1,-2)。将A(-2,1)和B(1,-2)代入一次函数y=kx+b得:-2k+b=1k+b=-2解得k=-1,b=-1。所以一次函数解析式为y=-x-1。(2)观察图像可知,当x<-2或0<x<1时,一次函数的值大于反比例函数的值。13.(1)设A商品每件进价x元,B商品每件进价y元。5x+3y=1103x+5y=130解得x=10,y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽芜湖经济技术开发区招聘中学非编教师55人模拟试卷及参考答案详解1套
- 2025福建省水利投资开发集团有限公司招聘1人考前自测高频考点模拟试题附答案详解(完整版)
- 2025江苏盐城市少年宫招聘校外教育志愿者考前自测高频考点模拟试题及答案详解(新)
- 2025湖南株洲世纪星翰林高级中学公开招聘教师23人考前自测高频考点模拟试题及1套完整答案详解
- 2025年台州仙居县卫生健康系统公开招聘卫技人员8人模拟试卷及答案详解一套
- 2025年嘉兴市级机关公开遴选公务员8人模拟试卷及答案详解(易错题)
- 2025年4月重庆市万州区李河镇人民政府公益性岗位招聘2人考前自测高频考点模拟试题附答案详解(典型题)
- 2025年中国信息通信科技集团招聘笔试题库历年考点版附带答案详解
- 2025国网宁夏电力有限公司博士后科研工作站博士后招聘1人模拟试卷附答案详解
- 2025年商丘民权县消防救援大队招聘政府专职消防员32名考前自测高频考点模拟试题及答案详解(各地真题)
- 四川省成都市外国语学校2024-2025学年高一上学期10月月考英语试题含解析
- 主动脉瘤护理措施
- 2025年学宪法、讲宪法知识竞赛题库及答案
- 酒店众筹项目方案
- 可信数据空间解决方案星环科技
- 【课件】虚拟现实技术在《现代物流管理》教学中的应用
- 精英中学6+1高效课堂变革 - 副本
- TCTBA 001-2019 非招标方式采购代理服务规范
- 冷库储存生姜合同范本
- 《酒类鉴赏威士忌》课件
- 消化道出血患者的护理
评论
0/150
提交评论