2025年湖南省涟源市中考数学经典例题含完整答案详解【典优】_第1页
2025年湖南省涟源市中考数学经典例题含完整答案详解【典优】_第2页
2025年湖南省涟源市中考数学经典例题含完整答案详解【典优】_第3页
2025年湖南省涟源市中考数学经典例题含完整答案详解【典优】_第4页
2025年湖南省涟源市中考数学经典例题含完整答案详解【典优】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省涟源市中考数学经典例题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为()A.4 B. C. D.12、已知点在半径为8的外,则(

)A. B. C. D.3、二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差(

)A.与p、q的值都有关 B.与p无关,但与q有关C.与p、q的值都无关 D.与p有关,但与q无关4、“2022年春节期间,中山市会下雨”这一事件为()A.必然事件 B.不可能事件 C.确定事件 D.随机事件5、下列四个图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列方程不适合用因式方程解法解的是(

)A.x2-3x+2=0 B.2x2=x+4C.(x-1)(x+2)=70 D.x2-11x-10=02、下列方程中,关于x的一元二次方程有(

)A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-93、下列方程中,是一元二次方程的是(

)A. B. C. D.4、已知抛物线(,,是常数,)经过点,,当时,与其对应的函数值.下列结论正确的是(

)A. B.C. D.关于的方程有两个不等的实数根5、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是(

)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.抛物线的顶点坐标为(1,﹣9);B.与y轴的交点坐标为(0,﹣8);C.与x轴的交点坐标为(﹣2,0)和(2,0);D.当x=﹣1时,对应的函数值y为﹣5.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如果关于x的方程x2﹣3x+k=0(k为常数)有两个相等的实数根,那么k的值是___.2、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.3、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.4、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_____.5、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PH⊥x轴于点H,连接PO.小华用几何画板软件对PO,PH的数量关系进行了探讨,发现PO﹣PH是个定值,则这个定值为_____.四、简答题(2小题,每小题10分,共计20分)1、(1)计算×cos45°﹣()﹣1+20180;(2)解方程组2、已知:如图,二次函数y=ax2+bx+的图象经过点A(2,6)和B(4,4),直线l经过点B并与x轴垂直,垂足为Q.(1)求二次函数的表达式;(2)如图1,作AK⊥x轴,垂足为K,连接AO,点R是直线1上的点,如果△AOK与以O,Q,R为顶点的三角形相似,请直接写出点R的纵坐标;(3)如图2,正方形CDEF的顶点C是第二象限抛物线上的点,点D,E在直线1上,以CF为底向右做等腰△CFM,直线l与CM,FM的交点分别是G,H,并且CG=GM,FH=HM,连接CE,与FM的交点为N,且点N的纵坐标是﹣1.求:①tan∠DCG的值;②点C的坐标.五、解答题(4小题,每小题10分,共计40分)1、为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.2、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.3、端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.4、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?-参考答案-一、单选题1、B【分析】连接OB,根据切线性质得∠ABO=90°,再根据圆周角定理求得∠AOB=60°,进而求得∠A=30°,然后根据含30°角的直角三角形的性质解答即可.【详解】解:连接OB,∵AB与相切于点B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故选:B.【点睛】本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.2、A【解析】【分析】根据点P与⊙O的位置关系即可确定OP的范围.【详解】解:∵点P在圆O的外部,∴点P到圆心O的距离大于8,故选:A.【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法.3、D【解析】【分析】分别求出函数解析式的最小值、当0≤x≤1时端点值即:当x=0和x=1时的函数值.由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0≤x≤1时,此函数最大值和最小值是、、其中的两个,所以最大值与最小值的差可能是或或,故其差只含p不含q,故与p有关,但与q无关故选:.【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键.4、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、多选题1、ABD【解析】【分析】根据因式分解法解一元二次方程的方法求解即可.【详解】解:A、x2-3x+2=0,适用公式法,不适合用因式分解法来解题,符合题意;B、2x2=x+4,适用公式法,不适合用因式分解法来解题,符合题意;C、(x-1)(x+2)=70,即,可得,故适合用因式分解法来解题,不符合题意;D、x2-11x-10=0,适用公式法,不适合用因式分解法来解题,符合题意;故选:ABD.【考点】此题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2、AC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A.x2=0,C.x2-3=x符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m-1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故选AC.【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.3、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【考点】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.4、BCD【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可.【详解】∵抛物线(是常数,)经过点(-1,-1),,当时,与其对应的函数值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A错误;∵b=a+2,a>2,c=1,,故B正确;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正确;∵,∴△==>0,∴有两个不等的实数根,故D正确.故选:BCD.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.5、ABD【解析】【分析】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=

5时,都是y

=

7,由抛物线的对称性可知:抛物线的对称轴为直线x=,根据对称轴和图表可得到顶点坐标,抛物线与y轴的交点坐标,抛物线与x轴的另一个交点坐标以及x=﹣1时,对应的函数值,判断即可.【详解】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=

5时,都是y

=

7,由抛物线的对称性可知:抛物线的对称轴为直线x=,抛物线的顶点坐标为(1,-

9),A正确,符合题意;由图表可知抛物线与y轴的交点坐标为(0,-8),B正确,符合题意;抛物线过点(-2,0),根据抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(4,0),C错误,不符合题意;由抛物线的对称性可知:当x=-1时,对应的函数值与x=3时相同,对应的函数值y

=-5,D正确,符合题意,故答案为:ABD.【考点】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,同时会根据图象得到信息.三、填空题1、【解析】【分析】根据判别式的意义得到Δ=(-3)2-4k=0,然后解一元一次方程即可.【详解】解:根据题意得Δ=(-3)2-4k=0,解得k=.故答案为.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.2、【分析】由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.【详解】解:与是等腰直角三角形,,,在与中,,≌,,,,在以为直径的圆上,的外心为,,,如图,当时,的值最小,,,,,.则的最小值是,故答案为:.【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.3、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球3个从中任意摸出一球,摸出白色球的概率是.故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.4、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解.【详解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案为:1.【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用.5、2【解析】【分析】设p(x,x2-1),则OH=|x|,PH=|x2-1|,因点P在x轴上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【详解】解:设p(x,x2-1),则OH=|x|,PH=|x2-1|,当点P在x轴上方时,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案为:2.【考点】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键.四、简答题1、(1)1;(2)【解析】【分析】(1)先化简二次根式、代入特殊角的三角函数值、计算负整数指数幂和零指数幂,再计算乘法和加减运算可得;(2)利用加减消元法求解可得.【详解】(1)原式=3-3+1=3﹣3+1=1;(2)①+②×3,得:10x=20,解得:x=2,把x=2代入①,得:6+y=1,解得:y=1,∴原方程组的解为.【考点】本题考查了实数的混合运算与二元一次方程组的解法.涉及了二次根式的化简、特殊角的三角函数值、0次幂与负指数幂的运算、加减消元法解二元一次方程组,熟练掌握相关的运算法则以及解题方法是解题的关键.2、(1)y=﹣;(2)点R的纵坐标为12,﹣12,或﹣;(3)①tan∠DCG的值是,②点C坐标为(﹣1,3).【解析】【分析】(1)将点A(2,6)和B(4,4)代入抛物线解析式,得方程组,解得a和b,再代回原解析式即可;(2)设点R的纵坐标为n,则QN=|n|,分两种情况,根据相似关系列比例式即可解得;(3)①由三角形的中位线,及证Rt△CDG≌Rt△FEH(HL)可解;②先根据点C在抛物线上,设其横坐标为m,然后用其分别表示出相关点的坐标,并表示出直线CE,再根据△CFN∽△EHN,及相似三角形对应边上的高之比也等于相似比,从而建立关于m的方程,解之,然后代回点C即可.【详解】(1)将点A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函数的表达式为y=.(2)∵A(2,6),AK⊥x轴,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,设点R的纵坐标为n,则QN=|n|,如果△AOK与以O,Q,R为顶点的三角形相似,有两种情况:①,则n=±12;②,则,从而n=±.答:点R的纵坐标为,12,﹣12,或﹣.(3)①∵CG=GM,FH=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF为正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限抛物线y=上的点,∴设点C坐标为(m,),则DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF为正方形,∴∠DEC=45°,故可设CE解析式为:y=﹣x+b,将点E坐标代入得b=.∴CE解析式为:y=﹣x﹣,∵点N的纵坐标是﹣1,∴﹣1=﹣x﹣,x=﹣,∴点N坐标为(﹣,﹣1),∵CDEF为正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,则EH边上的高与CF边上的高的比值也为,∴,化简得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴点C坐标为(﹣1,3).答:点C坐标为(﹣1,3).【考点】本题是二次函数的综合题,涉及到待定系数法求解析式,相似三角形,一次函数,三角函数,解方程等多项知识点与能力,难度较大.五、解答题1、(1);(2)最大利润为3840元【解析】【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价−成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【详解】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=−3x+216,当32<x≤40时,y=120,∴;(2)设利润为W,则:当8≤x≤32时,W=(x−8)y=(x−8)(−3x+216)=−3(x−40)2+3072,∵开口向下,对称轴为直线x=40,∴当8≤x≤32时,W随x的增大而增大,∴x=32时,W最大=2880,当32<x≤40时,W=(x−8)y=120(x−8)=120x−960,∵W随x的增大而增大,∴x=40时,W最大=3840,∵3840>2880,∴最大利润为3840元.【考点】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值.2、(1)顶点P的坐标为;(2)①6个;②,.【解析】【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴顶点为(2,-2a);(2)如图,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6个整数点;②当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,,;∴.当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,;∴.∴综上所述:,.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.3、(1)本次参加抽样调查的居民有600人;(2)见解析;(3).【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论