




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省榆树市中考数学综合提升测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<12、已知点在半径为8的外,则(
)A. B. C. D.3、下列各点中,关于原点对称的两个点是()A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)4、已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是()A. B.C.且 D.5、下列各式中表示二次函数的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x2二、多选题(5小题,每小题3分,共计15分)1、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()A.b2﹣4ac<0B.当x>﹣1时,y随x增大而减小C.a+b+c<0D.若方程ax2+bx+c-m=0没有实数根,则m>2E.3a+c<02、下列说法正确的是(
)A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧3、如图,是半圆的直径,半径于点,为半圆上一点,,与交于点,连接,,给出以下四个结论,其中正确的是(
)A.平分 B. C. D.4、下列各数不是方程解的是(
)A.6 B.2 C.4 D.05、已知,⊙的半径为5,,某条经过点的弦的长度为整数,则该弦的长度可能为(
)A.4 B.6 C.8 D.10第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是__________.2、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.3、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.4、如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则_____度.5、抛物线的开口方向向______.四、简答题(2小题,每小题10分,共计20分)1、已知:.(1)求代数式的值;(2)如果,求的值.2、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.五、解答题(4小题,每小题10分,共计40分)1、已知抛物线过点.(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角.①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.2、已知关于x的一元二次方程x2+x−m=0.(1)设方程的两根分别是x1,x2,若满足x1+x2=x1•x2,求m的值.(2)二次函数y=x2+x−m的部分图象如图所示,求m的值.3、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.4、如图1,在中,,,点D为AB边上一点.(1)若,则______;(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.-参考答案-一、单选题1、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可.【详解】解:设方程两根为x1,x2,根据题意得m+1≠0,,解得m<1且m≠-1,∵x1•x2<0,∴Δ>0,∴m的取值范围为m<1且m≠-1.故选:B.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程根与系数的关系.2、A【解析】【分析】根据点P与⊙O的位置关系即可确定OP的范围.【详解】解:∵点P在圆O的外部,∴点P到圆心O的距离大于8,故选:A.【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法.3、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.4、C【解析】【分析】由一元二次方程定义得出二次项系数k≠0;由方程有两个不相等的实数根,得出“△>0”,解这两个不等式即可得到k的取值范围.【详解】解:由题可得:,解得:且;故选:C.【考点】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.5、B【解析】【分析】利用二次函数的定义逐项判断即可.【详解】解:A、y=x2+,含有分式,不是二次函数,故此选项错误;B、y=2﹣x2,是二次函数,故此选项正确;C、y=,含有分式,不是二次函数,故此选项错误;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函数,故此选项错误.故选:B.【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键.二、多选题1、BCDE【解析】【分析】利用图象信息,以及二次函数的性质即可一一判断.【详解】∵二次函数与x轴有两个交点,∴b²-4ac>0,故A错误,观察图象可知:当x>-1时,y随x增大而减小,故B正确,∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,∴x=1时,y=a+b+c<0,故C正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax²+bx+c-m=0没有实数根,故D正确,∵对称轴x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正确,故答案为BCDE.【考点】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、ABD【解析】【分析】根据圆的相关知识和垂径定理进行分析即可.【详解】解:A.圆是轴对称图形,它有无数条对称轴,正确;B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边,正确;C.弦长相等,则弦所对的弦心距也相等,不正确,只有在同圆或等圆中,弦长相等,则弦所对的弦心距也相等;D.垂直于弦的直径平分这条弦,并且平分弦所对的弧,正确.故选:ABD.【考点】本题考查了学生对圆的基本概念和垂径定理的理解,属于基础题.3、ABCD【解析】【分析】根据圆周角定理即可得出平分,证明全等即可得到,根据即可得到,即可得到;【详解】∵是半圆的直径,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正确;又∵,,∴,∴,故B正确;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正确;∴,∴,故D正确;故选ABCD.【考点】本题主要考查了圆周角定理、直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,准确计算是解题的关键.4、ACD【解析】【分析】分别把四个选项中的数代入方程,看方程两边是否相等即可求解.【详解】解:A、将6代入得:,故6不是方程解,符合题意;B、将2代入得:,故2是方程解,不符合题意;C、将4代入得:,故4不是方程解,符合题意;D、将0代入得:,故0不是方程解,符合题意;故选:ACD.【考点】此题考查了一元二次方程解得含义,解题的关键是熟练掌握一元二次方程解得含义.5、CD【解析】【分析】过P作弦AB⊥OP,连接OA,根据垂径定理求出AP=BP,根据勾股定理求出AP,再求出AB,再得出答案即可.【详解】解:过P作弦AB⊥OP,连接OA,如图,∵OA=5,OP=3,∴,∵OP⊥AB,OP过圆心O,∴AP=BP=4,即AB=4+4=8,∴过P点长度为整数的弦有4条,①过P点最短的弦的长度是8,②过P点最长的弦的长度是10,③还有两条弦,长度是9,故答案为:CD.【考点】本题考查了勾股定理和垂径定理,能熟记垂径定理是解此题的关键.三、填空题1、【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式.【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的顶点坐标为(1,3),∴移动后抛物线的解析式是.故答案为:.【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型.2、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算⊙O的内接正四边形与内接正三角形的中心角得到∠AOD=90°,∠AOF=120°,则∠DOF=30°,然后计算即可得到n的值.【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故答案为:12.【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念.3、【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可.【详解】解:记红球为,白球为,列表得:∵一共有12种情况,摸到两个都是红球有2种,∴P(两个球都是红球),故答案是.【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.4、【解析】【分析】先连接,,作,的垂直平分线交于点,连接,,再由题意得到旋转中心,由旋转的性质即可得到答案.【详解】如图,连接,,作,的垂直平分线交于点,连接,,∵,的垂直平分线交于点,∴点是旋转中心,∵,∴旋转角.故答案为.【考点】本题考查旋转,解题的关键是掌握旋转的性质.5、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.四、简答题1、(1)1;(2)【解析】【分析】(1)设a=2k,b=3k,c=5k,代入代数式,即可求出答案;(2)把a、b、c的值代入,求出即可.【详解】∵∴设a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考点】本题考查了比例的性质的应用,主要考查学生的计算能力.2、(1)证明见解析;(2)35°【解析】【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.五、解答题1、(1);(2)①1;②点C的坐标是【解析】【分析】(1)将两点分别代入,得,解方程组即可;(2)①根据AB=4,斜边上的高为2,Q的横坐标为1,计算点C的横坐标为-1,即到y轴的距离为1;②根据直线PQ的解析式,设点A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代数式表示点C的坐标,代入抛物线解析式求解即可.【详解】解:(1)将两点分别代入,得解得.所以抛物线的解析式是.(2)①如图2,抛物线的对称轴是y轴,当点A与点重合时,,作于H.∵是等腰直角三角形,∴和也是等腰直角三角形,∴,∴点C到抛物线的对称轴的距离等于1.②如图3,设直线PQ的解析式为y=kx+b,由,得解得∴直线的解析式为,设,∴,所以.所以.将点代入,得.整理,得.因式分解,得.解得,或(与点P重合,舍去).当时,.所以点C的坐标是.【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.2、(1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1•x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值.(1)解:由题意得:x1+x2=-1,x1•x2=-m,∴-1=-m.∴m=1.当m=1时,x2+x-1=0,此时Δ=1+4m=1+4=5>0,符合题意.∴m=1;(2)解:图象可知:过点(1,0),当x=1,y=0,代入y=x2+x-m,得12+1-m=0.∴m=2.【考点】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=.3、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;(2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB=30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.【详解】解:(1)如图所示,连接OA,∵∠CBA=45°,∴∠COA=90°,∵A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国移动石家庄市2025秋招财务审计类专业追问清单及参考回答
- 中国广电安徽地区2025秋招心理测评常考题型与答题技巧
- 中国联通南充市2025秋招技能类专业追问清单及参考回答
- 河南地区中储粮2025秋招财务资产岗高频笔试题库含答案
- 襄阳市中石油2025秋招面试半结构化模拟题及答案财务与审计岗
- 安徽地区中石化2025秋招笔试模拟题含答案油田工程技术岗
- 中国广电鞍山市2025秋招综合管理类专业追问清单及参考回答
- 杭州市中石化2025秋招笔试提升练习题含答案
- 国家能源中山市2025秋招机械工程类面试追问及参考回答
- 国家能源抚州市2025秋招笔试综合知识题专练及答案
- 食品新产品开发 课件 第五章 食品新产品包装设计
- 幼儿园大班数学《4的分解组成》课件
- 《高危药品管理》课件
- 天津工业大学804物理化学历年考研真题14-16
- 高血压糖尿病健康管理督导记录表
- 《医疗机构基本标准(试行)》2018年版
- 医院检验标本采集与运送
- 秋冬季猪的饲养管理课件(模板)
- 新能源汽车技术全套ppt
- 2022年8月20日云南省省直机关遴选笔试真题及答案解析
- SOP标准作业指导书样板
评论
0/150
提交评论