




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A.15° B.45° C.15°或30° D.15°或45°2、如图,已知,,,是上的两个点,,,若,,,则的长为(
)A. B. C. D.3、已知,则为(
)A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上都有可能4、如图,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,则,满足关系(
)A. B. C. D.5、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.当AD=BF时,∠BEF的度数是()A.45° B.60° C.62.5° D.67.5°6、如图所示,是的边上的中线,cm,cm,则边的长度可能是(
)A.3cm B.5cm C.14cm D.13cm7、如图,,点在边上,则下列结论中一定成立的是(
)A. B.C. D.8、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有(
)A.①②③ B.①②④ C.①③④ D.①②③④9、如图,在中,是边上的高,平分,交于点,若,,则的面积等于()A.36 B.48 C.60 D.7210、如图,已知∠ABC=∠DCB.添加一个条件后,可得△ABC≌△DCB,则在下列条件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA第Ⅱ卷(非选择题70分)二、填空题(10小题,每小题4分,共计40分)1、如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,则∠ACB=_____.2、如图所示,中,.直线l经过点A,过点B作于点E,过点C作于点F.若,则__________.3、已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为__________.4、如图,在△ABC中,点D、E分别为边AC、BC上的点,且AD=DE,AB=BE,∠A=70°,则∠CED=______度.5、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.6、如图,在中,D是上的一点,,平分,交于点E,连接,若,,则_______.7、如图,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,则BF=_______.8、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.9、如图,已知BE=DC,请添加一个条件,使得△ABE≌△ACD:_____.10、如图,是的角平分线,于,的面积是,则__________.三、解答题(5小题,每小题6分,共计30分)1、如图,在中,是边上的一点,,平分,交边于点,连接.(1)求证:;(2)若,,求的度数.2、(1)如图,在中,按以下步骤作图(保留作图痕迹):①以点为圆心,任意长为半径作弧,分别交、于点D、E.②分别以点D、E为圆心,大于的长为半径作弧,两弧交于点.③作射线交于点.则是的______线.(2)如果,,的面积为18.则的面积为______.3、如图,已知:正方形,点,分别是,上的点,连接,,,且,求证:.4、如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E.求证:BD=2CE.5、如图,D是△ABC的边AC上一点,点E在AC的延长线上,ED=AC,过点E作EF∥AB,并截取EF=AB,连接DF.求证:DF=CB.-参考答案-一、单选题1、D【解析】【分析】根据题意作图,可得出OP为∠AOB的角平分线,有,以OP为边作∠POC=15°,则∠BOC的度数有两种情况,依据所作图形即可得解.【详解】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,∴(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC=15°或45°,故选:D.【考点】本题考查的知识点是根据题意作图并求解,依据题意作出正确的图形是解题的关键.2、B【解析】【分析】由题意可证可得可求EF的长.【详解】解:在和中,故选:B.【考点】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.3、C【解析】【分析】根据∠A和∠B的度数可得与互余,从而得出为直角三角形.【详解】解:,即与互余,则为直角三角形,故选C.【考点】此题考查的是直角三角形的判定,掌握有两个内角互余的三角形是直角三角形是解决此题的关键.4、C【解析】【分析】根据△△,证得,=,再利用∥BC得到=,再根据三角形内角和定理即可得到结论.【详解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故选:C.【考点】此题考查旋转图形的性质,等腰三角形的性质,两直线平行内错角相等,三角形的内角和定理.5、D【解析】【分析】根据旋转的性质可得CD=CE和∠DCE=90°,结合∠ACB=90°,AC=BC,可证△ACD≌△BCE,依据全等三角形的性质即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,则可计算出∠BEF的度数.【详解】解:由旋转性质可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB−∠DCB=∠DCE−∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故选:D.【考点】本题考查了旋转的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是熟练运用旋转的性质找出相等的线段和角,并能准确判定三角形全等,从而利用全等三角形性质解决相应的问题.6、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论.【详解】解:延长AD至M使DM=AD,连接CM,∵是的边上的中线,∴BD=CD,∵∠ADB=∠CDM,∴,∴MC=AB=5cm,AD=DM=4cm,∴AM=8cm在中,即:3<AC<13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键.7、C【解析】【分析】根据全等三角形的性质可直接进行排除选项.【详解】解:∵,∴AB=AD,BC=DE,AC=AE,∠B=∠ADE,∠C=∠E,∴∠ABD=∠ADB,故A、B、D都是错误的,C选项正确;故选C.【考点】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.8、D【解析】【分析】证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.9、B【解析】【分析】作交于点,然后根据角平分线的性质,可以得到,再根据三角形的面积公式,即可求得的面积.【详解】解:作交于点,∵是边上的高,∴,∵平分,∴∵,,∴.故选:B.【考点】本题考查了三角形的面积和角平分线性质.理解和掌握角的平分线的性质定理是解题的关键.10、A【解析】【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.【详解】解:∵∠ABC=∠DCB,∵BC=BC,A、添加AC=DB,不能得△ABC≌△DCB,符合题意;B、添加AB=DC,利用SAS可得△ABC≌△DCB,不符合题意;C、添加∠A=∠D,利用AAS可得△ABC≌△DCB,不符合题意;D、添加∠ABD=∠DCA,∴∠ACB=∠DBC,利用ASA可得△ABC≌△DCB,不符合题意;故选:A.【考点】本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键.二、填空题1、100°或100度【解析】【分析】延长AD到M,使得DM=AD,连接BM,证△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再证△BFM是等腰三角形,求出∠MBF的度数,即可解决问题.【详解】解:如图,延长AD到M,使得DM=AD,连接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案为:100°.【考点】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2、7【解析】【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:∵BE⊥l,CF⊥l,∴∠AEB=∠CFA=90°.∴∠EAB+∠EBA=90°.又∵∠BAC=90°,∴∠EAB+∠CAF=90°.∴∠EBA=∠CAF.在△AEB和△CFA中∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,∴△AEB≌△CFA.∴AE=CF,BE=AF.∴AE+AF=BE+CF.∴EF=BE+CF.∵,∴;故答案为:7.【考点】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.3、或【解析】【分析】以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解.【详解】解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,再以OP为边作,则为作或的角平分线,所以或.故答案为:或.【考点】本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作的两种情况,避免遗漏.4、110【解析】【分析】根据SSS证△ABD≌△EBD,得∠BED=∠A=70°,进而得出∠CED.【详解】解:∵AD=DE,AB=BE又BD=BD∴△ABD≌△EBD(SSS)∴∠BED=∠A=70°∴∠CED=180°-∠BED=180°-70°=110°故本题答案为110.【考点】本题通过考查全等三角形的判定和性质,进而得出结论.5、35°.【解析】【分析】根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.【详解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案为35°.【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.6、55°【解析】【分析】根据SAS证明△ACE≌△DCE,根据全等三角形的性质可得∠CDE=∠A=100°,再根据三角形外角的性质可求∠BED.【详解】解:∵CE平分∠ACB,∴∠ACE=∠DCE,在△ACE与△DCE中,,∴△ACE≌△DCE(SAS),∴∠CDE=∠A=100°,∵∠B=45°,∴∠BED=∠CDE-∠B=100°-45°=55°,故答案为:55°.【考点】本题考查了全等三角形的判定与性质,三角形外角的性质,关键是得到∠CDE=∠A=100°.7、或【解析】【分析】延长AD至G,使DG=AD,连接BG,可证明,则BG=AC,,根据AE=EF,得到,可证出,即得出AC=BF,从而得出BF的长.【详解】解:如图,延长AD至G,使DG=AD,连接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案为:【考点】本题考查了全等三角形的判定和性质,证明线段相等,一般转化为证明三角形全等,正确地作出辅助线构造全等三角形是解题的关键.8、2或【解析】【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等,故答案为:2或.【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键.9、∠B=∠C【解析】【分析】根据全等三角形的判定方法解答即可.【详解】解:∵BE=DC,∠A=∠A,∴根据AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案为:∠B=∠C.【考点】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.10、2cm【解析】【分析】过点D作,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【详解】解:如图,过点D作,垂足为点F,∵BD是∠ABC的角平分线,,∴DE=DF,∵的面积是,∴,即,∴DE=2cm.故答案为:2cm.【考点】本题考查了三角形的问题,掌握角平分线的性质、等高的三角形的面积之比等于其底边长之比是解题的关键.三、解答题1、(1)见解析(2)50°【解析】【分析】(1)根据平分,可得,即可求证;(2)根据全等三角形的性质可得,再由三角形外角的性质,即可求解.(1)明:∵平分,∴,在和中,∵,∴;(2)解:∵,∴,∵,∴.【考点】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.2、(1)角平分;(2)27【解析】【分析】(1)根据尺规作图要求,按给定的步骤与作法画图即可;(2)根据角分线性质可知,两三角形的AB与BC边上的高相等,则得面积比为底的比,依此列式求解即可.【详解】解:(1)如图所示,BG即为所求;故答案为:角平分;(2)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030骨科手术机器人商业化进程及市场前景预测报告
- 2025-2030风电项目融资租赁模式创新与风险控制体系报告
- 2025-2030非物质文化遗产数字化基础设施服务体系建设
- 2025-2030非常规饲料原料数据库建设与供应链金融创新模式报告
- 2025-2030费托蜡表面改性处理技术与特种纸张应用效果评估
- 2025-2030费托蜡行业价格竞争与非价格竞争分析
- 2025-2030费托蜡在食品包装领域的市场渗透率研究
- 小学英语分级阅读材料及教学设计方案
- 综合实践活动设计与评价标准范本
- 高校体育教学改革与学生健康管理
- 隧道施工应急预案方案
- 植物鉴赏课件
- 2024年4月自考00634广告策划试题
- 沪教版九年级上册化学第三章《物质构成的奥秘》检测卷(含答案解析)
- 如何与客户建立有效的沟通
- 薯片加工项目规划设计方案
- 部编版小学数学六年级上册分数乘法应用题解法一:找单位“1”解析同步练习
- 职业教育课题申报:产教融合背景下职业院校“四位一体”校企合作模式研究与实践
- 效益工资发放审批表
- 土壤的环境背景值与容量
- GB/T 26399-2011电力系统安全稳定控制技术导则
评论
0/150
提交评论